Undecidability of the validity problem

- We prove the undecidability of the validity problem for formulas of predicate logic with equality.
- Recall: there is an algorithm that given a formula of predicate logic with equality returns a sat-equivalent formula of predicate logic.
- It follows the validity problem for formulas of predicate logic with equality is also undecidable.

Goto-programs

The proof is by reduction from the halting problem for goto-programs.

$$Prog ::= \ell : Assign$$
(assignment) $\ell : goto \ell'$ (unconditional jump) $\ell : if x_i \neq 0$ then goto ℓ' (conditional jump) $\ell : halt$ (termination) $Prog ; Prog$ (concatenation)

Assign ::=
$$x_i := 0 | x_i := x_j$$

 $x_i := x_j + 1 | x_i := x_j - 1$
 ℓ ::= $1 | 2 | 3 | \dots$

Example

- 1: **if** $x_1 = 0$ **then goto 4**;
- 2: $x_1 := x_1 1;$
- 3: goto 1;
- 4: **halt**

Claim: goto-programs can simulate any program.

By the claim: a problem is decidable if it is solved by some goto-program.

We prove the following two theorems:

Theorem: The halting problem for goto-programs is undecidable: There is no (goto-)program that takes as input a goto-program Pand a valuation β of the variables of P and decides whether Pinitialized with β terminates.

Theorem: If the validity problem is decidable, then the halting problem for goto-programs is decidable.

Coding

Fact: Programs and valuations can be encoded as integers.

Notations:

- P(a₁,...,a_i) denotes the Program P initialized with (a₁,...,a_i, 0,..., 0).
 I.e., variables x₁,..., x_i are initialized with a₁,..., a_i and variables x_{i+1},..., x_n with 0.
- Π_n denotes the program with code number n (if the program exists).

Computable encodings

Fact: There exist computable encodings, i.e., encodings for which the following programs exist:

• Encoder.

Input: a program P. Output: the code of P, i.e., the number n such that $P = \prod_n$.

• Decoder.

Input: a number n.

Output: the program Π_n if n encodes a program, otherwise 'Not a program'.

Assumption: There is a program T such that for every pair $n, m \in \mathbb{N}$ the initialized program T(n, m) halts and reports

> Not a program if n is not the code of a program Yes if n is the code of a program and $\Pi_n(m)$ halts No if n is the code of a program and $\Pi_n(m)$ does not halt

We show that this assumption leads to a contradiction.

The contradiction

Fact: The asymption implies the existence of a program T' such that for every $n \in \mathbb{N}$ the initialized program T'(n)

> halts if n is the code of a program and $\Pi_n(n)$ does not halt does not halt if n is not the code of a program or $\Pi_n(n)$ halts

Let k be the code of T', i.e., $\Pi_k = T'$. Either the initialized program T'(k) halts, or it does not halt. But:

T'(k) halts

- $\Rightarrow k \text{ is the code of a program and} \\ \Pi_k(k) \text{ does not halt}$
- \Rightarrow T'(k) does not halt

T'(k) does not halt

- $\Rightarrow \Pi_k(k)$ halts
- \Rightarrow T'(k) halts

So the assumption is false.

 $\begin{array}{l} (\mathsf{Def. of } T') \\ (\Pi_k = T') \end{array}$

(Def. von T', k is code) ($\Pi_k = T'$)

Undecidability of the validity problem

We assign to every program P and valuation β a formula $\phi_{P\beta}$ of predicate logic with equality such that

 $\phi_{P\beta}$ is valid

if and only if

P with initialization β halts

There is a program that on input P, β outputs $\phi_{P\beta}$.

So no program can solve the validity problem.

Notations and definitions

Let k denote the number of instructions of P. (The last instruction is always halt.)

Let n denote the number of variables of P. (I.e., the variables of P are x_1, \ldots, x_n .)

A configuration of P is a tuple $(pc, m_1, \ldots, m_n) \in \mathbb{N}^{n+1}$. pc is the current value of the program counter and m_1, \ldots, m_n the current valuation of the variables.

Convention: the successor of a configuration $(\ell_k, m_1, \ldots, m_n)$ is again $(\ell_k, m_1, \ldots, m_n)$.

Symbols of the formula $\phi_{P\beta}$

- R, predicate symbol of arity (n+2).
- <, predicate symbol of arity 2.
- f, function symbol of arity 1.
- 0, constant.

Canonical structure ${\cal A}$

- Universe: \mathbb{N} .
- $<^{\mathcal{A}}$ is the usual order on \mathbb{N} .
- $\mathbf{0}^{\mathcal{A}} = 0.$
- $f^{\mathcal{A}}$ is the successor function, i.e., $f^{\mathcal{A}}(n) = n + 1$.
- $R^{\mathcal{A}}(s, pc, m_1, \dots, m_n) = 1$ if (pc, m_1, \dots, m_n) is the configuration of P after s steps (for the initialization β).

The auxiliary formula $\psi_{P\beta}$

$$\psi_{P\beta} = \psi_0 \wedge R(\mathbf{0},\beta) \wedge \psi_1 \wedge \dots \wedge \psi_{k-1}$$

Meaning of $R(\mathbf{0},\beta)$ in the structure \mathcal{A} : P is initialized with β

In the structure \mathcal{A} the formula ψ_i describes the effect of the *i*-th instruction of P. For instance:

• If
$$i: x_j := x_j + 1$$
 then

$$\psi_{i} = \forall x \forall y_{1} \dots \forall y_{n} ($$

$$R(x, f^{i}(\mathbf{0}), y_{1}, \dots y_{n}) \rightarrow$$

$$R(f(x), f^{(i+1)}(\mathbf{0}), y_{1}, \dots y_{j-1}, f(y_{j}), y_{j+1}, \dots, y_{n})$$

$$)$$

• If i: if $x_j = 0$ then goto j then

$$\psi_{i} = \forall x \forall y_{1} \dots \forall y_{n} ($$

$$R(x, f^{i}(\mathbf{0}), y_{1}, \dots y_{n}) \rightarrow$$

$$(y_{j} = \mathbf{0} \land R(f(x), f^{j}(\mathbf{0}), y_{1}, \dots, y_{n})$$

$$\vee$$

$$\neg(y_{j} = \mathbf{0}) \land R(f(x), f^{(i+1)}(\mathbf{0}), y_{1}, \dots, y_{n})$$

$$)$$

$$)$$

 ψ_0 guarantees that in every model the symbol < is interpreted as a total order, that **0** is its smallest element, that x < f(x) holds, and that f(x) is the <-successor of x:

$$\begin{split} \psi_0 &= \forall x \forall y (x < y \land \neg (y < x)) \land \\ &\forall x \forall y \forall z ((x < y \land y < z) \to x < z) \land \\ &\forall x (\mathbf{0} < x \lor \mathbf{0} = x) \land \\ &\forall x (x < f(x)) \land \\ &\forall x \forall z (x < z \to (f(x) < z \lor f(x) = z)) \end{split}$$

The formula $\phi_{P\beta}$

We set

$$\phi_{P\beta} = \psi_{P\beta} \longrightarrow \exists x \exists y_1 \dots \exists y_n \ R(x, f^k(\mathbf{0}), y_1, \dots, y_n)$$

Theorem: $\phi_{P\beta}$ is valid iff program P with initialization β halts. Proof: (\Rightarrow): If $\phi_{P\beta}$ is valid, then in particular the canonical structure \mathcal{A} is a model of $\phi_{P\beta}$. Since $\mathcal{A} \models \psi_{P\beta}$ clearly holds, we get $\mathcal{A} \models \exists x \exists y_1 \dots \exists y_n \ R(x, f^k(\mathbf{0}), y_1, \dots, y_n)$. So P initialized with β halts. (\Leftarrow): (Sketch.) If $\phi_{P\beta}$ is not valid, then there is a structure $\mathcal{B} = (U_{\mathcal{B}}, I_{\mathcal{B}})$ such that

$$\mathcal{B} \models \psi_{P\beta}$$
 and $\mathcal{B} \not\models \exists x \exists y_1 \dots \exists y_n \ R(x, f^k(\mathbf{0}), y_1, \dots, y_n)$

For every $i \ge 0$ let d_i be the element of $U_{\mathcal{B}}$ such that $(f^i(\mathbf{0}))^{\mathcal{B}} = d_i$. Since $\mathcal{B} \models \psi_{P\beta}$ we have $\mathcal{B} \models \psi_0$, and so (why?):

- $d_0 <^{\mathcal{B}} d_1 <^{\mathcal{B}} d_2 \dots$
- $d_i = d_j$ iff i = j, and
- for every $d \in U_{\mathcal{B}}$: if $f^{\mathcal{B}}(d) = d_i$ then $d = d_{i-1}$.

Let (pc, m_1, \ldots, m_n) be the configuration of P after s steps (with initialization β). Since $\mathcal{B} \models \psi_{P\beta}$ we have $R^{\mathcal{B}}(d^{s_i}, d^{Z_i}, d^{m_{1i}}, \ldots, d^{m_{1n}})$ for every $i \ge 0$. Since $\mathcal{B} \not\models \exists x \exists y_1 \ldots \exists y_n \ R(x, f^k(\mathbf{0}), y_1, \ldots, y_n), P$ does not terminate when initialized with β .

An alternative proof

The tiling problem:

Given: finite set of square tiles with fixed orientation and labelled borders: up, left, down, right. Each square is divided by its diagonals into four colored triangles.

Question: Can the plane be tiled with the given tiles in such a way, that neighbouring triangles in different tles always have the same colour?

Theorem: The tiling problem is undecidable.

The reduction

- We define for each set S of tiles a formula ϕ_S that is satisfiable iff the plane can be tiled with S.
- Symbols: predicate symbol P_s of arity 2 for each tile $s \in S$, function symbol f of arity 1.

Canonical structure \mathcal{A} :

- Universe: $\mathbb{Z} \times \mathbb{Z}$.
- $f^{\mathcal{A}}$ is the successor function, i.e., $f^{\mathcal{A}}(n) = n + 1$.
- $(i, j) \in P_s$ if tile s occupies the square with coordinates (i, j).

The formula ϕ_S

Let *H* be the set of tile pairs (s, s') s.t. s' can be placed right from s. Let *V* be the set of tile pairs (s, s') s.t. s' can be placed above s. We take $\phi_S = \forall x \forall y \ (F_1 \land F_2)$ where

$$F_{1} = \bigwedge_{\substack{s \neq s' \\ s \neq s'}} \neg (P_{s}(x, y) \land P_{s'}(x, y))$$

$$F_{2} = \bigvee_{\substack{(s,s') \in H \\ \bigvee}} (P_{s}(x, y) \land P_{s'}(x, f(x))) \land$$

$$(s,s') \in V$$

Consequences

Corollary: The satisfiability problem is undecidable for closed formulas of the form $F = \forall x \forall y F^*$.

Corollary: The satisfiability problem is undecidable for closed formulas of the form $F = \forall x \exists z \forall y F^*$, where F^* contains no function symbols.

Prefix classes

We consider formulas in prenex form without function symbols.

Undecidable classes:

- ∀*∃* (Skolem, 1920)
- ∀∀∀∃ (Suranyi, 1959)
- ∀∃∀ (Kahr, Moore, Wang, 1962)

Decidable classes:

- ∃*∀* (Bernays, Schönfinkel, 1928)
- $\exists^* \forall \exists^* (Ackerman, 1928)$
- ∃*∀²∃* (Gödel 1932, Kalmar 1933, Schütte 1934)