
Undecidability of the validity problem

We prove the undecidability of the validity problem for formulas of

predicate logic with equality.

Recall: there is an algorithm that given a formula of predicate logic

with equality returns a sat-equivalent formula of predicate logic.

It follows the validity problem for formulas of predicate logic with

equality is also undecidable.

1

Goto-programs

The proof is by reduction from the halting problem for

goto-programs.

Prog ::= ℓ : Assign (assignment)

ℓ : goto ℓ′ (unconditional jump)

ℓ : if xi 6= 0 then goto ℓ′ (conditional jump)

ℓ : halt (termination)

Prog ; Prog (concatenation)

Assign ::= xi := 0 | xi := xj

xi := xj + 1 | xi := xj − 1

ℓ ::= 1 | 2 | 3 | . . .

2

Example

1: if x1 = 0 then goto 4;

2: x1 := x1 − 1;

3: goto 1;

4: halt

3

Claim: goto-programs can simulate any program.

By the claim: a problem is decidable if it is solved by some

goto-program.

We prove the following two theorems:

Theorem: The halting problem for goto-programs is undecidable:

There is no (goto-)program that takes as input a goto-program P

and a valuation β of the variables of P and decides whether P

initialized with β terminates.

Theorem: If the validity problem is decidable, then the halting

problem for goto-programs is decidable.

4

Coding

Fact: Programs and valuations can be encoded as integers.

Notations:

• P (a1, . . . , ai) denotes the Program P initialized with

(a1, . . . , ai, 0, . . . , 0).

I.e., variables x1, . . . , xi are initialized with a1, . . . , ai and

variables xi+1, . . . , xn with 0.

• Πn denotes the program with code number n

(if the program exists).

5

Computable encodings

Fact: There exist computable encodings, i.e., encodings for which the

following programs exist:

• Encoder.

Input: a program P .

Output: the code of P , i.e., the number n such that P = Πn.

• Decoder.

Input: a number n.

Output: the program Πn if n encodes a program, otherwise ‘Not

a program’.

6

Assumption: There is a program T such that for every pair n,m ∈ N

the initialized program T (n,m) halts and reports

Not a program if n is not the code of a program

Yes if n is the code of a program and

Πn(m) halts

No if n is the code of a program and

Πn(m) does not halt

We show that this assumption leads to a contradiction.

7

The contradiction

Fact: The asumption implies the existence of a program T ′ such that

for every n ∈ N the initialized program T ′(n)

halts if n is the code of a program and

Πn(n) does not halt

does not halt if n is not the code of a program or

Πn(n) halts

8

Let k be the code of T ′, i.e., Πk = T ′. Either the initialized program

T ′(k) halts, or it does not halt. But:

T ′(k) halts

⇒ k is the code of a program and

Πk(k) does not halt (Def. of T ′)

⇒ T ′(k) does not halt (Πk = T ′)

T ′(k) does not halt

⇒ Πk(k) halts (Def. von T ′, k is code)

⇒ T ′(k) halts (Πk = T ′)

So the assumption is false.

9

Undecidability of the validity problem

We assign to every program P and valuation β a formula φPβ of

predicate logic with equality such that

φPβ is valid

if and only if

P with initialization β halts

There is a program that on input P, β outputs φPβ.

So no program can solve the validity problem.

10

Notations and definitions

Let k denote the number of instructions of P .

(The last instruction is always halt.)

Let n denote the number of variables of P .

(I.e., the variables of P are x1, . . . , xn.)

A configuration of P is a tuple (pc,m1, . . . ,mn) ∈ N
n+1.

pc is the current value of the program counter and m1, . . .mn the

current valuation of the variables.

Convention: the successor of a configuration (ℓk,m1, . . . ,mn) is

again (ℓk,m1, . . . ,mn).

11

Symbols of the formula φPβ

• R, predicate symbol of arity (n+ 2).

• <, predicate symbol of arity 2.

• f , function symbol of arity 1.

• 0, constant.

12

Canonical structure A

• Universe: N.

• <A is the usual order on N.

• 0A = 0.

• fA is the successor function, i.e., fA(n) = n+ 1.

• RA(s, pc,m1, . . . ,mn) = 1 if (pc,m1, . . . ,mn) is the

configuration of P after s steps (for the initialization β).

13

The auxiliary formula ψPβ

ψPβ = ψ0 ∧ R(0, β) ∧ ψ1 ∧ . . . ∧ ψk−1

Meaning of R(0, β) in the structure A: P is initialized with β

In the structure A the formula ψi describes the effect of the i-th

instruction of P . For instance:

• If i: xj := xj + 1 then

ψi = ∀x∀y1 . . . ∀yn (

R(x, f i(0), y1, . . . yn) →

R(f(x), f (i+1)(0), y1, . . . yj−1, f(yj), yj+1, . . . , yn)

)

14

• If i: if xj = 0 then goto j then

ψi = ∀x∀y1 . . . ∀yn (

R(x, f i(0), y1, . . . yn) →

(yj = 0 ∧ R(f(x), f j(0), y1, . . . , yn)

∨

¬(yj = 0) ∧ R(f(x), f (i+1)(0), y1, . . . , yn)

)

)

15

ψ0 guarantees that in every model the symbol < is interpreted as a

total order, that 0 is its smallest element, that x < f(x) holds, and

that f(x) is the <-successor of x:

ψ0 = ∀x∀y(x < y ∧ ¬(y < x)) ∧

∀x∀y∀z((x < y ∧ y < z) → x < z) ∧

∀x(0 < x ∨ 0 = x) ∧

∀x(x < f(x)) ∧

∀x∀z(x < z → (f(x) < z ∨ f(x) = z)

16

The formula φPβ

We set

φPβ = ψPβ −→ ∃x∃y1 . . . ∃yn R(x, fk(0), y1, . . . , yn)

Theorem: φPβ is valid iff program P with initialization β halts.

Proof: (⇒): If φPβ is valid, then in particular the canonical structure

A is a model of φPβ. Since A |= ψPβ clearly holds, we get

A |= ∃x∃y1 . . . ∃yn R(x, fk(0), y1, . . . , yn). So P initialized with β

halts.

17

(⇐): (Sketch.) If φPβ is not valid, then there is a structure

B = (UB, IB) such that

B |= ψPβ and B 6|= ∃x∃y1 . . . ∃yn R(x, fk(0), y1, . . . , yn) .

For every i ≥ 0 let di be the element of UB such that (f i(0))B = di.

Since B |= ψPβ we have B |= ψ0, and so (why?):

• d0 <
B d1 <

B d2 . . .,

• di = dj iff i = j, and

• for every d ∈ UB: if fB(d) = di then d = di−1.

Let (pc,m1, . . . ,mn) be the configuration of P after s steps (with

initialization β). Since B |= ψPβ we have RB(dsi , dZi , dm1i , . . . , dm1n)

for every i ≥ 0. Since B 6|= ∃x∃y1 . . . ∃yn R(x, fk(0), y1, . . . , yn), P

does not terminate when initialized with β.

18

An alternative proof

The tiling problem:

Given: finite set of square tiles with fixed orientation and labelled

borders: up, left, down, right. Each square is divided by its diagonals

into four colored triangles.

Question: Can the plane be tiled with the given tiles in such a way,

that neighbouring triangles in different tles always have the same

colour?

Theorem: The tiling problem is undecidable.

19

The reduction

We define for each set S of tiles a formula φS that is satisfiable iff

the plane can be tiled with S.

Symbols: predicate symbol Ps of arity 2 for each tile s ∈ S,

function symbol f of arity 1.

Canonical structure A:

• Universe: Z × Z.

• fA is the successor function, i.e., fA(n) = n+ 1.

• (i, j) ∈ Ps if tile s occupies the square with coordinates (i, j).

20

The formula φS

Let H be the set of tile pairs (s, s′) s.t. s′ can be placed right from s.

Let V be the set of tile pairs (s, s′) s.t. s′ can be placed above s.

We take φS = ∀x∀y (F1 ∧ F2) where

F1 =
∧

s 6=s′

¬(Ps(x, y) ∧ Ps′(x, y))

F2 =
∨

(s,s′)∈H

(Ps(x, y) ∧ Ps′(f(x), y)) ∧

∨

(s,s′)∈V

(Ps(x, y) ∧ Ps′(x, f(y)))

21

Consequences

Corollary: The satisfiability problem is undecidable for closed formulas

of the form F = ∀x∀y F ∗.

Corollary: The satisfiability problem is undecidable for closed formulas

of the form F = ∀x∃z∀y F ∗, where F ∗ contains no function symbols.

22

Prefix classes

We consider formulas in prenex form without function symbols.

Undecidable classes:

• ∀∗∃∗ (Skolem, 1920)

• ∀∀∀∃ (Suranyi, 1959)

• ∀∃∀ (Kahr, Moore, Wang, 1962)

Decidable classes:

• ∃∗∀∗ (Bernays, Schönfinkel, 1928)

• ∃∗∀∃∗ (Ackerman, 1928)

• ∃∗∀2∃∗ (Gödel 1932, Kalmar 1933, Schütte 1934)

23

	Undecidability of the validity problem
	{�f Goto}-programs
	Example
	Coding
	Computable encodings
	The contradiction
	Undecidability of the validity problem
	Notations and definitions
	Symbols of the formula $phi _{P�eta }$
	Canonical structure ${cal A}$
	The auxiliary formula $psi _{P�eta }$
	The formula $phi _{P�eta }$
	An alternative proof
	The reduction
	The formula $phi _{S}$
	Consequences
	Prefix classes

