Undecidability of the validity problem

We prove the undecidability of the validity problem for formulas of
predicate logic with equality.

Recall: there is an algorithm that given a formula of predicate logic
with equality returns a sat-equivalent formula of predicate logic.

It follows the validity problem for formulas of predicate logic with
equality is also undecidable.

Example

1: if xr1 = 0 then goto 4;
2. xyi=x — 1;

3. goto 1,

4. halt

Goto-programs

The proof is by reduction from the halting problem for
goto-programs.

Prog == [ : Assign (assignment)
¢: goto V' (unconditional jump)
¢ . if z; # 0 then goto ¢ (conditional jump)
¢ : halt (termination)
Prog ; Prog (concatenation)

Assign = x;:=0 | z;:=ux;
ri=z;+1 | z:=x;—-1
¢ = 1]2]3]...

Claim: goto-programs can simulate any program.

By the claim: a problem is decidable if it is solved by some
goto-program.

We prove the following two theorems:

Theorem: The halting problem for goto-programs is undecidable:
There is no (goto-)program that takes as input a goto-program P
and a valuation 3 of the variables of P and decides whether P
initialized with ( terminates.

Theorem: If the validity problem is decidable, then the halting
problem for goto-programs is decidable.



Coding

Fact: Programs and valuations can be encoded as integers.

Notations:
e P(ay,...,a;) denotes the Program P initialized with
(a1,...,a;,0,...,0).
l.e., variables x, ..., x; are initialized with a4, ..., a; and
variables x;.1,...,z, with 0.

e [I, denotes the program with code number n
(if the program exists).

Assumption: There is a program I" such that for every pair n,m € N
the initialized program T'(n,m) halts and reports

Not a program if n is not the code of a program
Yes if n is the code of a program and
I1,,(m) halts
No if n is the code of a program and
I1,,(m) does not halt

We show that this assumption leads to a contradiction.

Computable encodings

Fact: There exist computable encodings, i.e., encodings for which the
following programs exist:

e Encoder.
Input: a program P.
Output: the code of P, i.e., the number n such that P = II,,.

e Decoder.
Input: a number n.
Output: the program II,, if n encodes a program, otherwise ‘Not
a program’.

The contradiction

Fact: The asumption implies the existence of a program 7" such that
for every n € N the initialized program T"(n)

halts if n is the code of a program and
I1,,(n) does not halt

does not halt if n is not the code of a program or
I1,,(n) halts



Let k be the code of 77, i.e., [I, = T". Either the initialized program
T'(k) halts, or it does not halt. But:

T'(k) halts
=k is the code of a program and

11, (k) does not halt (Def. of T")
= T'(k) does not halt (I, =1T")

T'(k) does not halt
= (k) halts (Def. von T”, k is code)
= T'(k) halts (I, = ")

So the assumption is false.

Notations and definitions

Let k denote the number of instructions of P.
(The last instruction is always halt.)

Let n denote the number of variables of P.
(l.e., the variables of P are x1,...,x,.)

A configuration of P is a tuple (pc,my,...,m,) € N**1,
pc is the current value of the program counter and mq,...m, the
current valuation of the variables.

Convention: the successor of a configuration (¢, myq,...,my) is
again ({g,my,...,my).

Undecidability of the validity problem

We assign to every program P and valuation 3 a formula ¢ps of
predicate logic with equality such that

¢pg is valid
if and only if

P with initialization  halts

There is a program that on input P, 3 outputs ¢pg.

So no program can solve the validity problem.

Symbols of the formula ¢p

R, predicate symbol of arity (n + 2).
e <, predicate symbol of arity 2.

f, function symbol of arity 1.

0, constant.



Canonical structure A The auxiliary formula ¢p;

Yps= Yo A R(O,8) A Y1 A . A Y

Meaning of R(0, ) in the structure A: P is initialized with (3

e Universe: N.

e < is the usual order on N. In the structure A the formula 1); describes the effect of the i-th
e 0A =0 instruction of P. For instance:

e fAis the successor function, i.e., f4(n) =n+ 1. o If ira;:=x;+1 then

o RA(s,pc,mq,...,my,) = 1if (pc,my,...,m,) is the

%’ - vaiyl "‘vyn (
R(x>fi(0>7yl>-~-yn) -
R(f(x)7f(i+1)(0>7y17'"yjfhf(yj)ayj%»la'"7yn>
)

configuration of P after s steps (for the initialization (3).

o If i:if x; = 0 then goto j then ) o
1o guarantees that in every model the symbol < is interpreted as a

total order, that O is its smallest element, that x < f(x) holds, and
v = YaVyr ... Vy, ( that f(x) is the <-successor of x:
R($, fz(o)’ Yis - - yn) -
(=0 A R(f(x),f(0)y1,..yn)
V

ﬁ(yj :O) N R(f(x)af(i+1)(0)7yl7"'ayn)

Yo = VaVy(zr <yA-(y<z)) A
VeVyVz((z <y Ay <z) —x<z) A
Ve(0<xzVO0=2z) A
Ve(z < f(x)) A

) VaVz(z < z — (f(z) < 2V f(z) = 2)



The formula ¢p;

We set

bpg = Ypg —  FxIyr... 3y, R(x,fk(()),yl,...,yn)

Theorem: ¢pg is valid iff program P with initialization 3 halts.

Proof: (=): If ¢pg is valid, then in particular the canonical structure
A is a model of ¢ps. Since A |= 1pgs clearly holds, we get

Ak 32y, ...y, Rz, f5(0),y1,...,yn). So P initialized with 3
halts.

An alternative proof

The tiling problem:

Given: finite set of square tiles with fixed orientation and labelled
borders: up, left, down, right. Each square is divided by its diagonals
into four colored triangles.

Question: Can the plane be tiled with the given tiles in such a way,
that neighbouring triangles in different tles always have the same
colour?

Theorem: The tiling problem is undecidable.

(«<): (Sketch.) If ¢pg is not valid, then there is a structure
B = (Ug, I) such that

B = ps and B [~ 303y, ...y, Rz, f50), y1, .. un) -
For every i > 0 let d; be the element of Uy such that (f(0))? = d;.
Since B |= 1¥pg we have B |= 1)y, and so (why?):
o dy<Bd, <Bd,...,
o d; =d; iff i = j, and
o for every d € Ug: if f5(d) = d; then d = d;_;.

Let (pc,mq, ..., m,) be the configuration of P after s steps (with
initialization 3). Since B |= 1ps we have RE(d*, d% d™i, ... d™n)
for every i > 0. Since B [~ Jz3y; ...y, Rz, f¥(0), 1, ..., yn), P
does not terminate when initialized with (.

The reduction

We define for each set S of tiles a formula ¢g that is satisfiable iff
the plane can be tiled with S.
Symbols: predicate symbol P; of arity 2 for each tile s € S,
function symbol f of arity 1.
Canonical structure A:
e Universe: Z x Z.
e fAis the successor function, i.e., f4(n) =n+ 1.

e (i,7) € P if tile s occupies the square with coordinates (i, ).



The formula ¢4 Consequences

Let H be the set of tile pairs (s, s') s.t. s’ can be placed right from s.
Let V' be the set of tile pairs (s,s’) s.t. s’ can be placed above s.
We take ¢g = VaVy (F) A F,) where Corollary: The satisfiability problem is undecidable for closed formulas
of the form F' = VaVy F*.
P = N\~(Pdz,y) A Polz,y))

s#s’
F, = \/ (Py(z,y) A Py(f(x),y)) A Corollary: The satisfiability problem is undecidable for closed formulas
(s,8')EH of the form F' = VxdzVy F*, where F™* contains no function symbols.
\/ (Ps(x,y) A Po(z, f(y)))
(s,s")eV

Prefix classes

We consider formulas in prenex form without function symbols.

Undecidable classes:
e V*3* (Skolem, 1920)
e VVV3 (Suranyi, 1959)
e V3V (Kahr, Moore, Wang, 1962)

Decidable classes:
e I*V* (Bernays, Schonfinkel, 1928)
o F*v3* (Ackerman, 1928)
o I*V23* (Godel 1932, Kalmar 1933, Schiitte 1934)



