Restrictions of resolution

Positive and negative resolution

Restrictions allow to perform a resolution step only when the clauses involved satisfy certain syntactic conditions.

A restriction is complete if the calculus with the restriction is still complete.

We consider some restrictions of propositional resolution. Extending them to predicate logic is easy. P-resolution: one of the two clauses to be resolved is positive, i.e., contains only positive literals.

 $N\mbox{-resolution}:$ one of the two clauses to be resolved is negative, i.e., contains only negative literals.

Theorem: P- and N-resolution are complete.

Completeness proof

Theorem: P- and N-resolution are complete.

Proof: Only for P-resolution (N-resolution similar).

Let F be an unsatisfiable formula. We show that the empty clause can be derived using P-resolution.

By induction on the number n of atomic formulas occurring in F.

Case n = 0 is trivial. Let n > 0 and let A be an atomic formula of F. Example:

 $F = \quad \{A, \neg C\} \quad \{A, B, C\} \quad \{\neg A, \neg B, \neg C\} \quad \{\neg A, B\} \quad \{\neg B, C\} \quad \}$

We know that F[A/0] and F[A/1] are unsatisfiable.

Completeness proof

(1) Construct using P-Resolution a derivation of the empty clause from F[A/0] (exists by induction hypothesis).

 $F[A/0]: \quad \{\neg C\} \qquad \{B,C\} \qquad \{\neg B,C\}$

Completeness proof

- (2) Transform the derivation from step (1) into a derivation of $\{A\}$ from F.
- (3) Add resolution steps that resolve {A} with every clause of F containing ¬A.
- $F: \{A, \neg C\} \quad \{A, B, C\} \quad \{\neg A, \neg B, \neg C\} \quad \{\neg A, B\} \quad \{\neg B, C\}$

Add a derivation of the empty clause from F[A/1].

 $F[A/1]: \{\neg B, \neg C\} \{B\} \{\neg B, C\}$

This produces the clauses in F[A/1].

Linear resolution

Linear resolution: one of the two clauses must be the resolvent produced in the previous step (no restriction for the first step).

Theorem: Linear resolution is complete.

Completeness proof

Theorem: Linear resolution is complete.

Proof: Let F be unsatisfiable.

 $F = \{A\} \quad \{A, B, C\} \quad \{\neg A, \neg B, \neg C\} \quad \{\neg A, B\} \quad \{\neg B, C\}$

Let $F' \subseteq F$ be a minimal unsatisfiable subset (unsatisfiable core)

 $F' = \{A\} \quad \{\neg A, \neg B, \neg C\} \quad \{\neg A, B\} \quad \{\neg B, C\}$

We show: for every clause C of F' there is a linear derivation of the empty clause starting with C.

Proof by induction on the number n of atomic formulas. Case n = 0 is trivial. Let n > 0 and let A be an atomic formula of F. We consider two cases: |C| = 1 und |C| > 1.

8

Case |C| = 1

Case |C| = 1 (con.)

Let $C = \{L\}$.

 $C = \{A\}$

We know that F'[A/0] and F'[A/1] are unsatisfiable. Step 1: Choose an unsatisfiable core F'' of F'[L/1].

 $F'' = F'[A/1] = \{\neg B, \neg C\} \{B\} \{\neg B, C\}$

Pick $C' \in F''$ such that $C' \cup \{\overline{L}\} \in F'$. (C' exists, otherwise $F'' \subseteq F' - \{C\}$ and so by minimality of F' the core F'' is satisfiable.)

 $C' = \{\neg B, \neg C\}$

Step 2: Construct a linear derivation of the empty clause from F'' starting with C' (exists by induction hypothesis).

 $F'': \{\neg B, \neg C\} \{B\} \{C\}$

Case |C| = 1 (con.)

Step 3: Resolve $\{L\}$ with $C' \cup \{\overline{L}\}$, add the derivation from Step 2 to get a derivation of $\{\overline{L}\}$ from F', und resolve $\{L\}$ and $\{\overline{L}\}$.

 $F': \{A\} \{\neg A \neg B, \neg C\} \{\neg A, B\} \{\neg B, C\}$

Case |C| > 1

 $F = \{A\} \{A, B, C\} \{\neg A, \neg B, \neg C\} \{\neg A, B\} \{\neg B, C\}$ $F' = \{A\} \{\neg A, \neg B, \neg C\} \{\neg A, B\} \{\neg B, C\}$ $C = \{\neg A, \neg B, \neg C\}$

Step 1: Pick any $L \in C$ and set $C' = C - \{L\}$.

 $L = \neg B \qquad C' = \{\neg A, \neg C\}$

Choose an unsatisfiable core F'' of F'[L/0] containing C'. (Why must it exist?)

 $F'' = F'[\neg B/0] = F'[B/1] = \{A\} \{\neg A, \neg C\} \{C\}$

9

Case |K| > 1 (con.)

Case |K| > 1 (con.)

Step 2: Construct a linear derivation of the empty clause from F'' starting with C' (exists by induction hypothesis). Transform it into a derivation of $\{L\}$ from F'.

 $F': \{A\} \{\neg A, \neg B \neg C\} \{\neg A, B\} \{\neg B, C\}$

Step 3: Apply the previous case to $(F' - \{C\}) \cup \{\{L\}\}$. (Allowed, because $(F' - \{C\}) \cup \{\{L\}\}$ unsatisfiable and $(F' - \{C\})$ satisfiable.)

$$(F' - \{K\}) \cup \{\{L\}\}: \{A\} \{\neg A, B\} \{\neg B, C\} \{\neg B\}$$

Case |K| > 1 (con.)

Step 4: Concatenate the derivations from steps 2 and 3.

 $F': \{A\} \{\neg A, \neg B \neg C\} \{\neg A, B\} \{\neg B, C\}$

SLD-Resolution

The satisfiability problem for Horn-formulas can be solved in linear time.

The satisfiability problem for Horn-formulas of predicate logic is, however, unsatisfiable.

SLD-resolution is defined only for Horn-formulas.

SLD-resolution: linear resolution +

- start at a negative clause (the goal clause);
- at each resolution step one of the parent clauses is an input non-negative clause (a procedure clause).

13

Completeness

Theorem: SLD-resolution is complete (for Horn-formulas).

Proof: Let F be an unsatisfiable Horn-formula.

- (1) F contains a negative clause C. Proof: exercise.
- (2) There is a linear derivation of the empty clause starting with C. Already proved.
- (3) At each step of this derivation one of the two clauses to be resolved is an input procedure clause.Proof: by the Horn condition all resolvents of the derivation are negative. Since negative clauses can only be resolved with non-negative clauses, the other clause must be a procedure clause, which must come from the input.