
Resolution for predicate logic

Gilmore’s algorithm is correct, but useless in practice.

We upgrade resolution to make it work for predicate logic.

1

Recall: resolution in propositional logic

Resolution step:

{L1, . . . , Ln, A}

UUUUUUUUUUUUUUUU
{L′

1, . . . , L
′
m,¬A}

iiiiiiiiiiiiiiiii

{L1, . . . , Ln, L
′
1, . . . , L

′
m}

Mini-example:

{¬A,B}

JJJJJJJJJ
{A}

yy
yy

yy
yy

{¬B}

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

{B}

RRRRRRRRRRRRRRRRR

2

A set of clauses is unsatisfiable iff the empty clause can be derived.

2

Adapting Gilmore’s Algorithm

Gilmore’s Algorithm:

Let F be a closed formula in Skolem form and let {F1, F2, F3, . . . , }

be an enumeration of E(F).

n := 0;

repeat n := n + 1;

until (F1 ∧ F2 ∧ . . . ∧ Fn) is unsatisfiable;

(this can be checked with any calculus

for propositional logic)

report “unsatisfiable” and halt

“Any calculus” ; use resolution for the unsatisfiability test

3

Recall: Definition of Res

Definition: Let F be a set of clauses. The set of clauses Res(F) is

defined by

Res(F) = F ∪ {R | R is a resolvent of two clauses F}.

We set:

Res
0(F) = F

Res
n+1(F) = Res(Res

n(F)) für n ≥ 0

and define

Res
∗(F) =

⋃

n≥0

Res
n(F).

4

Ground clauses

A ground term is a term without occurrences of variables.

A ground formula is a formula in which only ground terms occur.

A predicate clause is a disjunction of atomic formulas.

A ground clause is a disjunction of ground atomic formulas.

A ground instance of a predicate clause K is the result of substituting

ground terms for the variables of K.

5

Clause Herbrand expansion

Let F = ∀y1∀y2 . . . ∀ynF
∗ be a closed formula in Skolem form with

matrix F ∗ in clause form, and let K1, . . . , Km be the set of predicate

clauses of F ∗.

The clause Herbrand expansion of F is the set of ground clauses

CE(F) =
m⋃

i=1

{Ki[y1/t1][y2/t2] . . . [yn/tn] | t1, t2, . . . , tn ∈ D(F)}

Lemma: CE(F) is unsatisfiable iff E(F) is unsatisfiable.

Proof: Follows immediately from the definition of satisfiability for sets

of formulas.

6

Ground resolution algorithm

Let C1, C2, C3, . . . be an enumeration of CE(F).

n := 0;

S := ∅;

repeat

n := n + 1;

S := S ∪ {Cn};

S := Res
∗(S)

until 2 ∈ S

report “unsatisfiable” and halt

7

Ground resolution theorem

Ground Resolution Theorem: A formula F = ∀y1 . . . ∀yn F ∗ with

matrix F ∗ in clause form is unsatisfiable iff there is a set of ground

clauses C1, . . . , Cm such that:

• Cm is the empty clause, and

• for every i = 1, . . . ,m

− either Ci is a ground instance of a clause K ∈ F ∗,

i.e., Ci = K[y1/t1] . . . [yn/tn] where tj ∈ D(F),

− or Ci is a resolvent of two clauses Ca, Cb with a < i and

b < i

Proof sketch: If F is unsatisfiable, then C1, . . . , Cm can be easily

extracted from S by leaving clauses out.

8

Substitutions

A substitution sub is a (partial) mapping of variables to terms.

An atomic substitution is a substitution which maps one single

variable to a term.

F sub denotes the result of applying the substitution sub to the

formula F .

t sub denotes the result of applying the substitution sub to the term t

9

Substitutions

The concatenation sub1sub2 of two substitutions sub1 and sub2 is the

substitution that maps every variable x to sub2(sub1(x)).

(First apply sub1 and then sub2.)

10

Substitutions

Two substitutions sub1, sub2 are equivalent if t sub1 = t sub2 for

every term t.

Every substitution is equivalent to a concatenation of atomic

substitutions. For instance, the substitution

x 7→ f(h(w)) y 7→ g(a, h(w)) z 7→ h(w)

is equal to the concatenation

[x/f(z)] [y/g(a, z)] [z/h(w)].

11

Swapping substitutions

Rule for swapping substitutions:

[x/t]sub = sub[x/t sub] if x does not occur in sub.

Examples:

• [x/f(y)] [y/g(z)]
︸ ︷︷ ︸

sub

= [y/g(z)][x/f(g(z))]

• but [x/f(y)] [x/g(z)]
︸ ︷︷ ︸

sub

6= [x/g(z)][x/f(y)]

• and [x/z] [y/x]
︸ ︷︷ ︸

sub

6= [y/x][x/z]

12

Unifier and most general unifier

Let L = {L1, . . . , Lk} be a set of literals of predicate clauses (terms).

A substitution sub is a unifier of L if

L1sub = L2sub = . . . = Lksub

i.e., if |Lsub| = 1, where Lsub = {L1sub, . . . , Lksub}.

A unifier sub of L is a most general unifier of L if for every unifier

sub
′ of L there is a substitution s such that sub

′ = sub s.

13

Exercise

Unifiable? Yes No

P (f(x)) P (g(y))

P (x) P (f(y))

P (x, f(y)) P (f(u), z)

P (x, f(y)) P (f(u), f(z))

P (x, f(x)) P (f(y), y)

P (x, g(x), g2(x)) P (f(z), w, g(w))

P (x, f(y)) P (g(y), f(a)) P (g(a), z)

14

Unification algorithm

Input: a set L 6= ∅ of literals

sub := [] (the empty substitution)

while |Lsub| > 1 do

Find the first position at which two literals L1, L2 ∈ Lsub differ

if none of the two characters at that position is a variable then

then report “non-unifiable” and halt

else let x be the variable and t the term starting at that position

(possibly another variable)

if x occurs in t

then report “non-unifiable” and halt

else sub := sub [x/t]

report “unifiable” and return sub

15

Correctness of the unification algorithm

Lemma: The unification algorithm terminates.

Proof: Every execution of the while-loop (but the last) substitutes a

variable x by a term t not containing x, and so the number of

variables occurring in Lsub decreases by one.

Lemma: If L is non-unifiable then the algorithm reports

“non-unifiable”.

Proof: If L is non-unifiable then the algorithm can never exit the loop.

16

Correctness of the unification algorithm

Lemma: If L is unifiable then the algorithm reports “unifiable” and

returns the most general unifier of L (and so in particular every

unifiable set L has a most general unifier).

Proof: Assume L is unifiable and let m be the number of iterations of

the loop on input L.

Let sub0 = [], for 1 ≤ i ≤ m let subi be the value of sub after the

i-th iteration of the loop.

We prove for every 0 ≤ i ≥ m:

(a) If 1 ≤ i ≤ m the i-th iteration does not report “non-unifiable”.

(b) For every (w.l.o.g. ground) unifier sub
′ of L there is a

substitution si such that sub
′ = subi si.

By (a) the algorithm exits the loop normally after m iterations and

reports “unifiable”. By (b) it returns a most general unifier.

17

Correctness of the unification algorithm

Proof by induction on i:

Basis (i = 0). For (a) there is nothing to prove. For (b) take

s0 = sub
′.

Step (i > 0). By induction hypothesis there is si−1 such that

subi−1si−1 is ground unifier.

For (a), since |Lsubi−1| > 1 and Lsubi−1 unifiable, x and t exist and

x does not occur in t, and so no “non-unifiable” is reported.

For (b), get si by removing from si−1 every atomic substitution of the

form [x/t]. Further, since subi−1si−1 ground unifier we can assume

w.l.o.g. that x does not occur in si. We have:

18

Correctness of the unification algorithm

L subi si

= L subi−1 [x/t] si (algorithm extends subi−1 with [x/t])

= L subi−1 si [x/t si] (x does not occur in si)

= L subi−1 si [x/t si−1] (x does not occur in t)

= L subi−1 si [x/x si−1] (t si−1 = x si−1 because subi−1si−1 unifier)

= L subi−1 si−1 (definition of si)

= L sub
′ (induction hypothesis)

19

Resolution for predicate logic

A clause R is a resolvent of two predicate clauses K1, K2 if the

following holds:

• There are renamings of variables s1, s2 (particular cases of

substitutions) such that no variable occurs in both K1 s1 and

K2 s2.

• There are literals L1, . . . , Lm in K1 s1 and literals L′
1, . . . , L

′
n in

K2 s2 such that the set

L = {L1, . . . , Ln, L
′
1, . . . , L

′
n}

is unifiable. Let sub be the most general unifier of L.

• R = ((K1 s1 − {L1, . . . , Lm}) ∪ (K2 s2 − {L′
1, . . . , L

′
n}))sub.

20

Correctness and completeness

Questions:

• If using predicate resolution 2 can be derived from F then F is

unsatisfiable (correctness)

• If F is unsatisfiable then predicate resolution can derive the

empty clause 2 from F (completeness)

21

Exercise

Have the following pairs of predicate clauses a resolvent?

How many resolvents are there?

C1 C2 Resolvents

{P (x), Q(x, y)} {¬P (f(x))}

{Q(g(x)), R(f(x))} {¬Q(f(x))}

{P (x), P (f(x))} {¬P (y), Q(y, z)}

22

Lifting-Lemma

Let C1, C2 be predicate clauses and let

C ′
1, C

′
2 be two ground instances of them

that can be resolved into the resolvent

R′.

Then there is predicate resolvent R of

C1, C2 such that R′ is a ground instance

of R.

K1

��
AA

AA
AA

AA
K2

��}}
}}

}}
}}

K ′
1

AA
AA

AA
AA

R

��

K ′
2

}}
}}

}}
}}

R′

—: Resolution

→: Substitution

23

Lifting-Lemma: example

{¬P (f(x)), Q(x)}

[x/g(a)]

��
SSSSSSSSSSSSSSS

{P (f(g(y)))}

[y/a]

��nnnnnnnnnnnn

{¬P (f(g(a))), Q(g(a))}

SSSSSSSSSSSSSSS
{Q(g(y))}

[y/a]
��

{P (f(g(a)))}

nnnnnnnnnnnn

{Q(g(a))}

24

Predicate Resolution Theorem

Resolution Theorem of Predicate Logic:

Let F be a closed formula in Skolem form with matrix F ∗ in

predicate clause form. F is unsatisfiable iff 2 ∈ Res
∗(F ∗).

25

Universal closure

The universal closure of a formula H with free variables x1, . . . , xn is

the formula

∀H = ∀x1∀x2 . . . ∀xnH

Let F be a closed formula in Skolem form with matrix F ∗. Then

F ≡ ∀F ∗ ≡
∧

K∈F ∗

∀K

Example:

F ∗ = P (x, y) ∧ ¬Q(y, x)

F ≡ ∀x∀y(P (x, y) ∧ ¬Q(y, x)) ≡ ∀x∀yP (x, y) ∧ ∀x∀y(¬Q(y, x))

26

Exercise

Is the set of clauses

{{P (f(x))}, {¬P (f(x)), Q(f(x), x)}, {¬Q(f(a), f(f(a)))},

{¬P (x), Q(x, f(x))}}

unsatisfiable?

27

Demo

We consider the following set of predicate clauses (Schöning):

F = {{¬P (x), Q(x), R(x, f(x))}, {¬P (x), Q(x), S(f(x))}, {T (a)},

{P (a)}, {¬R(a, x), T (x)}, {¬T (x),¬Q(x)}, {¬T (x),¬S(x)}}

and prove it is unsatisfiable with otter.

28

Refinements of resolution

Problems of predicate resolution:

• Branching degree of the search space too large

• Too many dead ends

• Combinatorial explosion of the search space

Solution:

Strategies and heuristics: forbid certain resolution steps, which

narrows the search space.

But: Completeness must be preserved!

29

	Resolution for predicate logic
	Recall: resolution in propositional logic
	Adapting Gilmore's Algorithm
	Recall: Definition of $mathit {Res}$
	Ground clauses
	Clause Herbrand expansion
	Ground resolution algorithm
	Ground resolution theorem
	Substitutions
	Substitutions
	Substitutions
	Swapping substitutions
	Unifier and most general unifier
	Exercise
	Unification algorithm
	Correctness of the unification algorithm
	Correctness of the unification algorithm
	Correctness of the unification algorithm
	Correctness of the unification algorithm
	Resolution for predicate logic
	Correctness and completeness
	Exercise
	Lifting-Lemma
	Lifting-Lemma: example
	Predicate Resolution Theorem
	Universal closure
	Exercise
	Demo
	Refinements of resolution

