Resolution for predicate logic

Gilmore's algorithm is correct, but useless in practice.

We upgrade resolution to make it work for predicate logic.

Adapting Gilmore’s Algorithm

Gilmore's Algorithm:

Let F' be a closed formula in Skolem form and let {F}, F5, F3, . ..

be an enumeration of E(F).

n :=0;

repeat n:=n+1;

until (Fy A Fy A ... A F,) is unsatisfiable;
(this can be checked with any calculus
for propositional logic)

report “unsatisfiable” and halt

“Any calculus” ~ use resolution for the unsatisfiability test

)

Recall: resolution in propositional logic

Resolution step:

{Li,..., Ly, A} {24, Ly mAY

Mini-example:

A set of clauses is unsatisfiable iff the empty clause can be derived.

Recall: Definition of FRes

Definition: Let F' be a set of clauses. The set of clauses Res(F') is
defined by

Res(F) = FU{R | R is a resolvent of two clauses F'}.
We set:
Res’(F) = F
Res" ™Y (F) = Res(Res"(F)) firn>0

and define
Res™(F) = U Res"(F).

n>0

Ground clauses

A ground term is a term without occurrences of variables.

A ground formula is a formula in which only ground terms occur.
A predicate clause is a disjunction of atomic formulas.

A ground clause is a disjunction of ground atomic formulas.

A ground instance of a predicate clause K is the result of substituting
ground terms for the variables of K.

Ground resolution algorithm

Let Cy,Cy, Cs, ... be an enumeration of CE(F).

n:=0;

S =0

repeat
n:=n++1;
S:=SuU{C,};
S := Res*(S)

until O € S

report “unsatisfiable” and halt

Clause Herbrand expansion

Let F' =Yy, Yy ...Vy,F™* be a closed formula in Skolem form with
matrix F* in clause form, and let K1,..., K,, be the set of predicate
clauses of F™.

The clause Herbrand expansion of F' is the set of ground clauses

CE(F) = U{Ki[yl/tl][yg/tg] /] |t tas ot € D(F)}

Lemma: CE(F) is unsatisfiable iff E(F') is unsatisfiable.

Proof: Follows immediately from the definition of satisfiability for sets
of formulas.

Ground resolution theorem

Ground Resolution Theorem: A formula F' = Vy; ... Vy, F* with
matrix F* in clause form is unsatisfiable iff there is a set of ground
clauses (1, ..., C,, such that:

e (), is the empty clause, and
o foreveryi=1,....,m
— either C; is a ground instance of a clause K € F*,
i.e., C; = Klyi/t1] ... [yn/tn] where t; € D(F),

— or (} is a resolvent of two clauses C,, (', with a < 7 and
b<1

Proof sketch: If F'is unsatisfiable, then C, ..., C,, can be easily
extracted from S by leaving clauses out.

Substitutions

A substitution sub is a (partial) mapping of variables to terms.

An atomic substitution is a substitution which maps one single
variable to a term.

F'sub denotes the result of applying the substitution sub to the
formula F.

t sub denotes the result of applying the substitution sub to the term ¢

Substitutions

Two substitutions subq, sub, are equivalent if t sub; = t suby for
every term ¢.

Every substitution is equivalent to a concatenation of atomic
substitutions. For instance, the substitution

z = f(h(w)) y gla,h(w)) z— h(w)
is equal to the concatenation

[/ f(2)] y/g(a, 2)] [z/h(w)].

11

Substitutions

The concatenation subysubs of two substitutions sub; and subs is the
substitution that maps every variable x to subs(sub;(z)).

(First apply sub; and then subs.)

Swapping substitutions

Rule for swapping substitutions:

[2/t]sub = sublx/t sub] if x does not occur in sub.

Examples:

o [z/f(Y)]]y/g(2)] = ly/9(2)][x/[(9(2))]
——

sub

o but [x/f(y)] [x/9(2)] # [2/9()[x/ [(y)]

sub

e and [w/z]w# ly/x][x/z]

sub

10

12

Unifier and most general unifier

Let L ={Ly,...,Lx} be a set of literals of predicate clauses (terms).
A substitution sub is a unifier of L if

Lisub = Lysub = ... = Ljsub

i.e., if |Lsub| =1, where Lsub = {Lysub, ..., Lysub}.

A unifier sub of L is a most general unifier of L if for every unifier
sub’ of L there is a substitution s such that sub" = sub s.

13

Unification algorithm

Input: a set L # () of literals
sub :=[] (the empty substitution)
while |Lsub| > 1 do
Find the first position at which two literals L, Ly € Lsub differ

if none of the two characters at that position is a variable then
then report “non-unifiable” and halt
else let x be the variable and ¢ the term starting at that position
(possibly another variable)
if x occursint
then report “non-unifiable” and halt
else sub := sub [z/t]
report “unifiable” and return sub

15

Exercise
Unifiable? Yes | No
P(f(z)) P(g(y))
P(z) P(f(y))
P(x, f(y)) P(f(u), z)
P(x, f(y)) P(f(u), f(2))
P(x, f(z)) P(f(y),v)
P(z,9(x),g°(x)) P(f(2),w,g(w))
Pz, f(y)) P(g(y), f(a)) P(g(a), 2)

Correctness of the unification algorithm

Lemma: The unification algorithm terminates.

Proof: Every execution of the while-loop (but the last) substitutes a
variable x by a term ¢ not containing x, and so the number of
variables occurring in Lisub decreases by one.

Lemma: If L is non-unifiable then the algorithm reports
“non-unifiable”.

Proof: If L is non-unifiable then the algorithm can never exit the loop.

14

16

Correctness of the unification algorithm

Lemma: If L is unifiable then the algorithm reports “unifiable” and
returns the most general unifier of L (and so in particular every
unifiable set L has a most general unifier).

Proof: Assume L is unifiable and let m be the number of iterations of
the loop on input L.

Let subg =[], for 1 < i < m let sub; be the value of sub after the
i-th iteration of the loop.

We prove for every 0 < ¢ > m:
(a) If 1 < i < m the i-th iteration does not report “non-unifiable”.

(b) For every (w.l.o.g. ground) unifier sub’ of L there is a
substitution s; such that sub’ = sub; s;.

By (a) the algorithm exits the loop normally after m iterations and

reports “unifiable”. By (b) it returns a most general unifier.

17

Correctness of the unification algorithm

L sub; s;
= Lsub;_q[z/t]s;
L sub;_q s; [x/t s;]

(algorithm extends sub;_; with [x/t])
(
L sub;_1 s; [x/ts;—1] (x does not occur in t)
(
(
(

x does not occur in s;)
L subi,l S; [l’/ﬂ? 5@‘71] tSi,1 =TS because subi,lsi,l unifier)
L sub;_1 s;_1 definition of s;)

= L sub’ induction hypothesis)

19

Correctness of the unification algorithm

Proof by induction on i:

Basis (i = 0). For (a) there is nothing to prove. For (b) take
so = sub’.

Step (¢ > 0). By induction hypothesis there is s;_; such that
sub;_18;_1 is ground unifier.

For (a), since |Lisub;_1| > 1 and Lsub;_; unifiable, = and ¢ exist and
x does not occur in ¢, and so no “non-unifiable” is reported.

For (b), get s; by removing from s;_; every atomic substitution of the
form [z/t]. Further, since sub;_1s;_; ground unifier we can assume
w.l.0.g. that x does not occur in s;. We have:

18

Resolution for predicate logic

A clause R is a resolvent of two predicate clauses K7, K> if the
following holds:

e There are renamings of variables s;, so (particular cases of
substitutions) such that no variable occurs in both K7 s; and
K2 S9.

e There are literals Ly, ..., L,, in Ky sy and literals L, ..., L] in
K5 s9 such that the set

L={L,....,L,,L,,..., L.}
is unifiable. Let sub be the most general unifier of L.

o R=((Kis1 —{Ly,...,Lyn}) U(Kosy—{L},..., L }))sub.

20

Correctness and completeness

Questions:

e |If using predicate resolution O can be derived from F' then F'is

unsatisfiable (correctness)

e |If F'is unsatisfiable then predicate resolution can derive the
empty clause O from F' (completeness)

Lifting-Lemma

Let C7, 5 be predicate clauses and let
C1, C4 be two ground instances of them
that can be resolved into the resolvent
R

Then there is predicate resolvent R of
(1, Cy such that R is a ground instance
of R.

—: Resolution
—: Substitution

21

28]

Exercise

Have the following pairs of predicate clauses a resolvent?
How many resolvents are there?

C Cs Resolvents
{P(x),Qz,y)} {=P(f(x))}
{Qlg(@)), R(f(x))} | {-Q(f(x))}
{P(x), P(f(x)} | {-P(y),Qy,2)}

Lifting-Lemma: example

{=P(f(2)),Q(

)
t
)

{=P(f(g(a))

(a\

)}
/9(a)]
,Q(g(a))} {Q(g

{P(f(g(y
/ l{y/
(y)} {P(f(g(a

i

{Q(g

(@)}

)}
al

)}

22

24

Predicate Resolution Theorem

Resolution Theorem of Predicate Logic:

Let F' be a closed formula in Skolem form with matrix £ in
predicate clause form. F' is unsatisfiable iff O € Res™(F™).

Exercise

Is the set of clauses

{P(f (@)} A=P(f(2)), Q(f(2),)}, {=Q(f(a), f(f(a)))},
{=P(x), Q(z, f(x))}}

unsatisfiable?

25

27

Universal closure

The universal closure of a formula H with free variables x4, ..., x, is
the formula

VH = VZIJIVIL’Q Ce VZL‘nH
Let I be a closed formula in Skolem form with matrix /™*. Then

F=VF*= /\ VK
KeF*

Example:

o= P(l’,y) /_'Q<yax)
Fo= Vavy(P(z,y) A —Qy, x)) = VaVyP(z,y) AVaVy(-Q(y, v))

26

Demo

We consider the following set of predicate clauses (Schoning):

Fo= {{=P(),Q), Rz, f(x))}, {~P(x), Q(z), S(f(x))},{T(a)},
{P(a)}, {~R(a,z), T(x)}, {-T(x), ~Q(x)}, {=~T(x), ~5(x)} }

and prove it is unsatisfiable with otter.

28

Refinements of resolution

Problems of predicate resolution:

e Branching degree of the search space too large

e Too many dead ends

e Combinatorial explosion of the search space
Solution:

Strategies and heuristics: forbid certain resolution steps, which
narrows the search space.

But: Completeness must be preserved!

29

