
Resolution for predicate logic

Gilmore’s algorithm is correct, but useless in practice.

We upgrade resolution to make it work for predicate logic.

1

Recall: resolution in propositional logic

Resolution step:

{L1, . . . , Ln, A}

UUUUUUUUUUUUUUUU
{L′

1, . . . , L
′
m,¬A}

iiiiiiiiiiiiiiiii

{L1, . . . , Ln, L
′
1, . . . , L

′
m}

Mini-example:

{¬A,B}

JJJJJJJJJ
{A}

yy
yy

yy
yy

{¬B}

��
��

��
��

��
��

��
��

{B}

RRRRRRRRRRRRRRRRR

2

A set of clauses is unsatisfiable iff the empty clause can be derived.

2

Adapting Gilmore’s Algorithm

Gilmore’s Algorithm:

Let F be a closed formula in Skolem form and let {F1, F2, F3, . . . , }
be an enumeration of E(F).

n := 0;

repeat n := n + 1;

until (F1 ∧ F2 ∧ . . . ∧ Fn) is unsatisfiable;

(this can be checked with any calculus

for propositional logic)

report “unsatisfiable” and halt

“Any calculus” ; use resolution for the unsatisfiability test

3

Recall: Definition of Res

Definition: Let F be a set of clauses. The set of clauses Res(F) is

defined by

Res(F) = F ∪ {R | R is a resolvent of two clauses F}.
We set:

Res0(F) = F

Resn+1(F) = Res(Resn(F)) für n ≥ 0

and define

Res∗(F) =
⋃
n≥0

Resn(F).

4

Ground clauses

A ground term is a term without occurrences of variables.

A ground formula is a formula in which only ground terms occur.

A predicate clause is a disjunction of atomic formulas.

A ground clause is a disjunction of ground atomic formulas.

A ground instance of a predicate clause K is the result of substituting

ground terms for the variables of K.

5

Clause Herbrand expansion

Let F = ∀y1∀y2 . . . ∀ynF
∗ be a closed formula in Skolem form with

matrix F ∗ in clause form, and let K1, . . . , Km be the set of predicate

clauses of F ∗.

The clause Herbrand expansion of F is the set of ground clauses

CE(F) =
m⋃

i=1

{Ki[y1/t1][y2/t2] . . . [yn/tn] | t1, t2, . . . , tn ∈ D(F)}

Lemma: CE(F) is unsatisfiable iff E(F) is unsatisfiable.

Proof: Follows immediately from the definition of satisfiability for sets

of formulas.

6

Ground resolution algorithm

Let C1, C2, C3, . . . be an enumeration of CE(F).

n := 0;

S := ∅;
repeat

n := n + 1;

S := S ∪ {Cn};
S := Res∗(S)

until 2 ∈ S

report “unsatisfiable” and halt

7

Ground resolution theorem

Ground Resolution Theorem: A formula F = ∀y1 . . . ∀yn F ∗ with

matrix F ∗ in clause form is unsatisfiable iff there is a set of ground

clauses C1, . . . , Cm such that:

• Cm is the empty clause, and

• for every i = 1, . . . ,m

− either Ci is a ground instance of a clause K ∈ F ∗,
i.e., Ci = K[y1/t1] . . . [yn/tn] where tj ∈ D(F),

− or Ci is a resolvent of two clauses Ca, Cb with a < i and

b < i

Proof sketch: If F is unsatisfiable, then C1, . . . , Cm can be easily

extracted from S by leaving clauses out.

8

Substitutions

A substitution sub is a (partial) mapping of variables to terms.

An atomic substitution is a substitution which maps one single

variable to a term.

F sub denotes the result of applying the substitution sub to the

formula F .

t sub denotes the result of applying the substitution sub to the term t

9

Substitutions

The concatenation sub1sub2 of two substitutions sub1 and sub2 is the

substitution that maps every variable x to sub2(sub1(x)).

(First apply sub1 and then sub2.)

10

Substitutions

Two substitutions sub1, sub2 are equivalent if t sub1 = t sub2 for

every term t.

Every substitution is equivalent to a concatenation of atomic

substitutions. For instance, the substitution

x 7→ f(h(w)) y 7→ g(a, h(w)) z 7→ h(w)

is equal to the concatenation

[x/f(z)] [y/g(a, z)] [z/h(w)].

11

Swapping substitutions

Rule for swapping substitutions:

[x/t]sub = sub[x/t sub] if x does not occur in sub.

Examples:

• [x/f(y)] [y/g(z)]︸ ︷︷ ︸
sub

= [y/g(z)][x/f(g(z))]

• but [x/f(y)] [x/g(z)]︸ ︷︷ ︸
sub

6= [x/g(z)][x/f(y)]

• and [x/z] [y/x]︸ ︷︷ ︸
sub

6= [y/x][x/z]

12

Unifier and most general unifier

Let L = {L1, . . . , Lk} be a set of literals of predicate clauses (terms).

A substitution sub is a unifier of L if

L1sub = L2sub = . . . = Lksub

i.e., if |Lsub| = 1, where Lsub = {L1sub, . . . , Lksub}.
A unifier sub of L is a most general unifier of L if for every unifier

sub ′ of L there is a substitution s such that sub ′ = sub s.

13

Exercise

Unifiable? Yes No

P (f(x)) P (g(y))

P (x) P (f(y))

P (x, f(y)) P (f(u), z)

P (x, f(y)) P (f(u), f(z))

P (x, f(x)) P (f(y), y)

P (x, g(x), g2(x)) P (f(z), w, g(w))

P (x, f(y)) P (g(y), f(a)) P (g(a), z)

14

Unification algorithm

Input: a set L 6= ∅ of literals

sub := [] (the empty substitution)

while |Lsub| > 1 do

Find the first position at which two literals L1, L2 ∈ Lsub differ

if none of the two characters at that position is a variable then

then report “non-unifiable” and halt

else let x be the variable and t the term starting at that position

(possibly another variable)

if x occurs in t

then report “non-unifiable” and halt

else sub := sub [x/t]

report “unifiable” and return sub

15

Correctness of the unification algorithm

Lemma: The unification algorithm terminates.

Proof: Every execution of the while-loop (but the last) substitutes a

variable x by a term t not containing x, and so the number of

variables occurring in Lsub decreases by one.

Lemma: If L is non-unifiable then the algorithm reports

“non-unifiable”.

Proof: If L is non-unifiable then the algorithm can never exit the loop.

16

Correctness of the unification algorithm

Lemma: If L is unifiable then the algorithm reports “unifiable” and

returns the most general unifier of L (and so in particular every

unifiable set L has a most general unifier).

Proof: Assume L is unifiable and let m be the number of iterations of

the loop on input L.

Let sub0 = [], for 1 ≤ i ≤ m let subi be the value of sub after the

i-th iteration of the loop.

We prove for every 0 ≤ i ≥ m:

(a) If 1 ≤ i ≤ m the i-th iteration does not report “non-unifiable”.

(b) For every (w.l.o.g. ground) unifier sub ′ of L there is a

substitution si such that sub ′ = subi si.

By (a) the algorithm exits the loop normally after m iterations and

reports “unifiable”. By (b) it returns a most general unifier.

17

Correctness of the unification algorithm

Proof by induction on i:

Basis (i = 0). For (a) there is nothing to prove. For (b) take

s0 = sub ′.

Step (i > 0). By induction hypothesis there is si−1 such that

subi−1si−1 is ground unifier.

For (a), since |Lsubi−1| > 1 and Lsubi−1 unifiable, x and t exist and

x does not occur in t, and so no “non-unifiable” is reported.

For (b), get si by removing from si−1 every atomic substitution of the

form [x/t]. Further, since subi−1si−1 ground unifier we can assume

w.l.o.g. that x does not occur in si. We have:

18

Correctness of the unification algorithm

L subi si

= L subi−1 [x/t] si (algorithm extends subi−1 with [x/t])

= L subi−1 si [x/t si] (x does not occur in si)

= L subi−1 si [x/t si−1] (x does not occur in t)

= L subi−1 si [x/x si−1] (t si−1 = x si−1 because subi−1si−1 unifier)

= L subi−1 si−1 (definition of si)

= L sub ′ (induction hypothesis)

19

Resolution for predicate logic

A clause R is a resolvent of two predicate clauses K1, K2 if the

following holds:

• There are renamings of variables s1, s2 (particular cases of

substitutions) such that no variable occurs in both K1 s1 and

K2 s2.

• There are literals L1, . . . , Lm in K1 s1 and literals L′
1, . . . , L

′
n in

K2 s2 such that the set

L = {L1, . . . , Ln, L
′
1, . . . , L

′
n}

is unifiable. Let sub be the most general unifier of L.

• R = ((K1 s1 − {L1, . . . , Lm}) ∪ (K2 s2 − {L′
1, . . . , L

′
n}))sub.

20

Correctness and completeness

Questions:

• If using predicate resolution 2 can be derived from F then F is

unsatisfiable (correctness)

• If F is unsatisfiable then predicate resolution can derive the

empty clause 2 from F (completeness)

21

Exercise

Have the following pairs of predicate clauses a resolvent?

How many resolvents are there?

C1 C2 Resolvents

{P (x), Q(x, y)} {¬P (f(x))}
{Q(g(x)), R(f(x))} {¬Q(f(x))}
{P (x), P (f(x))} {¬P (y), Q(y, z)}

22

Lifting-Lemma

Let C1, C2 be predicate clauses and let

C ′
1, C

′
2 be two ground instances of them

that can be resolved into the resolvent

R′.

Then there is predicate resolvent R of

C1, C2 such that R′ is a ground instance

of R.

K1

�� AA
AA

AA
AA

K2

��}}
}}

}}
}}

K ′
1

AA
AA

AA
AA

R

��

K ′
2

}}
}}

}}
}}

R′

—: Resolution

→: Substitution

23

Lifting-Lemma: example

{¬P (f(x)), Q(x)}
[x/g(a)]

�� SSSSSSSSSSSSSSS
{P (f(g(y)))}

[y/a]

��nnnnnnnnnnnn

{¬P (f(g(a))), Q(g(a))}

SSSSSSSSSSSSSSS
{Q(g(y))}

[y/a]
��

{P (f(g(a)))}

nnnnnnnnnnnn

{Q(g(a))}

24

Predicate Resolution Theorem

Resolution Theorem of Predicate Logic:

Let F be a closed formula in Skolem form with matrix F ∗ in

predicate clause form. F is unsatisfiable iff 2 ∈ Res∗(F ∗).

25

Universal closure

The universal closure of a formula H with free variables x1, . . . , xn is

the formula

∀H = ∀x1∀x2 . . .∀xnH

Let F be a closed formula in Skolem form with matrix F ∗. Then

F ≡ ∀F ∗ ≡
∧

K∈F ∗
∀K

Example:

F ∗ = P (x, y) ∧ ¬Q(y, x)

F ≡ ∀x∀y(P (x, y) ∧ ¬Q(y, x)) ≡ ∀x∀yP (x, y) ∧ ∀x∀y(¬Q(y, x))

26

Exercise

Is the set of clauses

{{P (f(x))}, {¬P (f(x)), Q(f(x), x)}, {¬Q(f(a), f(f(a)))},
{¬P (x), Q(x, f(x))}}

unsatisfiable?

27

Demo

We consider the following set of predicate clauses (Schöning):

F = {{¬P (x), Q(x), R(x, f(x))}, {¬P (x), Q(x), S(f(x))}, {T (a)},
{P (a)}, {¬R(a, x), T (x)}, {¬T (x),¬Q(x)}, {¬T (x),¬S(x)}}

and prove it is unsatisfiable with otter.

28

Refinements of resolution

Problems of predicate resolution:

• Branching degree of the search space too large

• Too many dead ends

• Combinatorial explosion of the search space

Solution:

Strategies and heuristics: forbid certain resolution steps, which

narrows the search space.

But: Completeness must be preserved!

29

