Syntax of predicate logic: formulas

Variables are expressions of the form x_{i} mit $i=1,2,3 \ldots$.
Predicate symbols are expressions of the form P_{i}^{k}, where $i=1,2,3 \ldots$ and $k=0,1,2 \ldots$.
Function symbols are expressions of the form f_{i}^{k}, where $i=1,2,3 \ldots$ und $k=0,1,2 \ldots$.
We call i the (identification) index and k die arity of the symbol. Terms are inductively defined as follows:
(1) Variables are terms.
(2) Function symbols of arity 0 are terms.
(3) If f is a function symbol with arity $k \geq 1$ and t_{1}, \ldots, t_{k} are terms then $f\left(t_{1}, \ldots, t_{k}\right)$ is a term.
Function symbols of arity 0 are called constants.

Formulas (of predicate logic) are inductively defined as follows:.
(1) Predicate symbols of arity 0 are formulas.
(2) If P is a predicate symbol of arity $k \geq 1$ and t_{1}, \ldots, t_{k} are terms then $P\left(t_{1}, \ldots, t_{k}\right)$ is a formula.
(3) If F is a formula, then $\neg F$ is also a formula.
(4) If F and G are formulas, then $(F \wedge G)$ and $(F \vee G)$ are also formulas.
(5) If x is a variable and F is a formula, then $\exists x F$ and $\forall x F$ are also formulas. The symbols \exists and \forall are called the existential and the universal quantifier, respectively.

Formulas of the form P for some predicate symbol of arity 0 or of the form $P\left(t_{1}, \ldots, t_{k}\right)$ are called atomic formulas. The syntax tree and the subformulas of a formula are defined as usual.

Free and bounded variables, closed formulas

A variable x occurs in a formula F if it appears in some term of F. An occurrence of a variable in a formula is either free or bounded. An occurrence of x in F is bounded if it belongs to some subformula of F of the form $\exists x G$ or $\forall x G$; the smallest such subformula is the scope of the occurrence. Otherwise the occurrence is free.
A formula without any free occurrence of any variable is closed.
The matrix of a formula F is the formula obtained by removing from F every occurrence of the quantifiers \exists and \forall, together with the (occurrence of a) variable following them. The matrix of F is denoted by F^{*}.

NF: non-formula F: formula, but not closed C: closed

	NF	F	C
$\forall x P(a)$			
$\forall x \exists y(Q(x, y) \vee R(x, y))$			
$\forall x Q(x, x) \rightarrow \exists x Q(x, y)$			
$\forall x P(x) \vee \forall x Q(x, x)$			
$\forall x(P(y) \wedge \forall y P(x))$			
$P(x) \rightarrow \exists x Q(x, P(x))$			
$\forall f \exists x P(f(x))$			

Semantics of predicate logic: structures

NF: non-formula
 F: formula, but not closed
 C: closed

	NF	F	C
$\forall x(\neg \forall y Q(x, y) \wedge R(x, y))$			
$\exists z(Q(z, x) \vee R(y, z)) \rightarrow \exists y(R(x, y) \wedge Q(x, z))$			
$\exists x(\neg P(x) \vee P(f(a)))$			
$P(x) \rightarrow \exists x P(x)$			
$\exists x \forall y((P(y) \rightarrow Q(x, y)) \vee \neg P(x))$			
$\exists x \forall x Q(x, x)$			

A structure is a pair $\mathcal{A}=\left(U_{\mathcal{A}}, I_{\mathcal{A}}\right)$, where $U_{\mathcal{A}}$ is an arbitrary, nonempty set called the ground set or universe of \mathcal{A}, and $I_{\mathcal{A}}$ is a partial function that maps

- predicate symbols of arity $k \geq 1$ to predicates over $U_{\mathcal{A}}$ of arity k (i.e., to functions of type $U_{\mathcal{A}}^{k} \rightarrow\{0,1\}$ or, equivalently, to subsets of $U_{\mathcal{A}}^{k}$),
- predicate symbols of arity 0 to either 0 or 1
- function symbols of arity $k \geq 1$ to functions over $U_{\mathcal{A}}$ of arity k (i.e., to functions of type $U_{\mathcal{A}}^{k} \rightarrow U_{\mathcal{A}}$),
- constants f of arity 0 to elements of the universe $U_{\mathcal{A}}$, and
- variables x to elements of the universe $U_{\mathcal{A}}$.

Evaluation of a formula in a structure

In other words:

- The domain of $I_{\mathcal{A}}$ is a subset of $\left\{P_{i}^{k}, f_{i}^{k}, x_{i} \mid i=1,2,3, \ldots, k=0,1,2 ., \ldots\right\}$.
- The image of $I_{\mathcal{A}}$ is a subset of the set of all predicates and functions over $U_{\mathcal{A}}$ and elements of $U_{\mathcal{A}}$.

We abbreviate $I_{\mathcal{A}}(P)$ to $P^{\mathcal{A}}, I_{\mathcal{A}}(f)$ to $f^{\mathcal{A}}$, and $I_{\mathcal{A}}(x)$ to $x^{\mathcal{A}}$.
Let F be a formula and let $\mathcal{A}=\left(U_{\mathcal{A}}, I_{\mathcal{A}}\right)$ be a structure.
\mathcal{A} is suitable for F if all predicate and function symbols occurring in F and all variables occurring free in F belong to the domain of $I_{\mathcal{A}}$.

Let F be a formula and let \mathcal{A} be a structure suitable for F. For every term t that can be constructed from variables and function symbols that appear in F, we define the value of t in the structure \mathcal{A}, denoted by $\mathcal{A}(t)$. The definition is inductive:
(1) If $t=x$ for some variable x), then $\mathcal{A}(t)=x^{\mathcal{A}}$.
(2) If $t=f\left(t_{1}, \ldots, t_{k}\right)$ for some function symbol f of arity k and terms t_{1}, \ldots, t_{k}, then $\mathcal{A}(t)=f^{\mathcal{A}}\left(\mathcal{A}\left(t_{1}\right), \ldots, \mathcal{A}\left(t_{k}\right)\right)$.
(3) If $t=a$ for some constant a, then $\mathcal{A}(t)=a^{\mathcal{A}}$.

Analogously, we define inductively the (truth-)value of a formula F in the structure \mathcal{A}, denoted by $\mathcal{A}(F)$:

- If $F=P\left(t_{1}, \ldots, t_{k}\right)$ for some predicate symbol P of arity k and terms t_{1}, \ldots, t_{k} then

$$
\mathcal{A}(F)= \begin{cases}1 & \text { if }\left(\mathcal{A}\left(t_{1}\right), \ldots, \mathcal{A}\left(t_{k}\right)\right) \in P^{\mathcal{A}} \\ 0 & \text { otherwise }\end{cases}
$$

- If $F=\neg G$ for some formula G then

$$
\mathcal{A}(F)= \begin{cases}1 & \text { if } \mathcal{A}(G)=0 \\ 0 & \text { otherwise }\end{cases}
$$

- If $F=(G \wedge H)$ for some formulas G and H then

$$
\mathcal{A}(F)= \begin{cases}1 & \text { if } \mathcal{A}(G)=1 \text { and } \mathcal{A}(H)=1 \\ 0 & \text { otherwise }\end{cases}
$$

- If $F=(G \vee H)$ for some formulas G and H then

$$
\mathcal{A}(F)= \begin{cases}1 & \text { if } \mathcal{A}(G)=1 \text { or } \mathcal{A}(H)=1 \\ 0 & \text { otherwise }\end{cases}
$$

Model, validity, satisfiability

- If $F=\forall x G$ for some formula G and variable x then

$$
\mathcal{A}(F)=\left\{\begin{array}{l}
1 \text { if for every } d \in U_{\mathcal{A}}: \mathcal{A}_{[x / d]}(G)=1 \\
0 \text { otherwise }
\end{array}\right.
$$

- If $F=\exists x G$ for some formula G and variable x then
$\mathcal{A}(F)=\left\{\begin{array}{l}1 \text { if there exists } d \in U_{\mathcal{A}} \text { such that: } \mathcal{A}_{[x / d]}(G)=1 \\ 0 \text { otherwise }\end{array}\right.$
where $\mathcal{A}_{[x / d]}$ denotes the structure \mathcal{A}^{\prime} that coincides with \mathcal{A} everywhere, but (possibly) in the definition of $x^{\mathcal{A}^{\prime}}$: it holds $x^{\mathcal{A}^{\prime}}=d$, whether x belongs to the domain of $I_{\mathcal{A}}$ or not.

We write $\mathcal{A} \models F$ to denote that the structure \mathcal{A} is suitable for the formula F and $\mathcal{A}(F)=1$ holds. We say that F holds in \mathcal{A} or that \mathcal{A} is a model of F.

If every structure suitable for F is a model of F, then we write $\models F$ and say that F ist valid.
If F has at least one model then we say that F is satisfiable.

Exercise

V : valid S : satisfiable, but not valid

U: unsatisfiable

	V	S	U
$\forall x P(a)$			
$\exists x(\neg P(x) \vee P(a))$			
$P(a) \rightarrow \exists x P(x)$			
$P(x) \rightarrow \exists x P(x)$			
$\forall x P(x) \rightarrow \exists x P(x)$			
$\forall x P(x) \wedge \neg \forall y P(y)$			

V: valid S : satisfiable, but not valid U : unsatisfiable

	V	S	U
$\forall x(P(x, x) \rightarrow \exists x \forall y P(x, y))$			
$\forall x \forall y(x=y \rightarrow f(x)=f(y))$			
$\forall x \forall y(f(x)=f(y) \rightarrow x=y)$			
$\exists x \exists y \exists z(f(x)=y \wedge f(x)=z \wedge y \neq z)$			

Consequence and equivalence

Exercise

A formula G is a consequence of the formulas F_{1}, \ldots, F_{k} if every structure suitable for F_{1}, \ldots, F_{k} and for G that is model of $\left\{F_{1}, \ldots, F_{k}\right\}$ is also model of G.
We write $F_{1}, \ldots, F_{k} \models G$ to denote that G is a consequence of F_{1}, \ldots, F_{k}.
Two formulas F and G are (semantically) equivalent if every structure \mathcal{A} suitable for both F and G satisfies $\mathcal{A}(F)=\mathcal{A}(G)$. We then write $F \equiv G$.
(1) $\forall x P(x) \vee \forall x Q(x, x)$
(2) $\forall x(P(x) \vee Q(x, x))$
(3) $\forall x(\forall z P(z) \vee \forall y Q(x, y))$

	Y	N
$1 \models 2$		
$2 \models 3$		
$3 \models 1$		

(1) $\exists y \forall x P(x, y)$
(2) $\forall x \exists y P(x, y)$

	Y	N
$\forall x \forall y F \equiv \forall y \forall x F$		
$\forall x \exists y F \equiv \exists x \forall y F$		
$\exists x \exists y F \equiv \exists y \exists x F$		
$\forall x F \vee \forall x G \equiv \forall x(F \vee G)$		
$\forall x F \wedge \forall x G \equiv \forall x(F \wedge G)$		
$\exists x F \vee \exists x G \equiv \exists x(F \vee G)$		
$\exists x F \wedge \exists x G \equiv \exists x(F \wedge G)$		

Predicate logic with equality

Formalizing statements

A statement in natural language is formalized as a formula F and a structure \mathcal{A}. The formalizer claims that the statement is true iff F is true in some adequate structure extending \mathcal{A}.
\mathcal{A} fixes the meaning of the predicates that are taken as known. F may contain definitions of predicates or functions (see example in the next slides).

The names of the predicate symbols are chosen to suggest their meaning in the structure. The structure is often omitted, because it is assumed to be known (danger!).
We consider the following example
There are infinitely many prime numbers

If the meaning of "prime" and "greater-than" are assumed to be known, then we can take
Formula $F_{1}: \forall x \exists y(\operatorname{Pri}(y) \wedge G t(y, x))$
Structure $\mathcal{A}_{1}: \quad U_{\mathcal{A}_{1}}=\mathbb{N}$

$$
\begin{aligned}
\operatorname{Pri}^{\mathcal{A}_{1}} & =\{n \in \mathbb{N} \mid n \text { is prime }\} \\
G t^{\mathcal{A}_{1}} & =\{(n, m) \in \mathbb{N} \mid n>m\}
\end{aligned}
$$

What if the meaning of "prime" is not clear to everybody?

If the meaning of "divides" is known, then we can take
Formula $F_{2}: \quad F_{1} \wedge \forall x(\operatorname{Pri}(x) \leftrightarrow \forall y \operatorname{Div}(y, x) \rightarrow(y=x \vee y=o n e))$
Structure $\mathcal{A}_{2}: \quad U_{\mathcal{A}_{2}}=\mathbb{N}$

$$
\begin{aligned}
G t^{\mathcal{A}_{2}} & =\{(n, m) \in \mathbb{N} \mid n>m\} \\
\text { Div }^{\mathcal{A}_{2}} & =\{(n, m) \in \mathbb{N} \mid n \text { divides } m\} \\
\text { one }^{\mathcal{A}_{2}} & =1
\end{aligned}
$$

\mathcal{A}_{2} does not interpret Pri, but an structure that extends \mathcal{A}_{2} and interprets Pri can only satisfy F_{2} if it assigns to Pri "the right meaning".

What if the meaning of "divides" is not clear to everybody?

Formalization III

If the meaning of "product" is known, then we can take
Formula $F_{3}: F_{2} \wedge \forall x \forall y(\operatorname{Div}(x, y) \leftrightarrow \exists z \operatorname{prod}(x, z)=y)$
Structure $\mathcal{A}_{3}: \quad \quad U_{\mathcal{A}_{3}}=\mathbb{N}$
$G t^{\mathcal{A}_{3}}=\{(n, m) \in \mathbb{N} \mid n>m\}$
one $^{\mathcal{A}_{3}}=1$

$$
\operatorname{prod}^{\mathcal{A}_{3}}(n, m)=n \cdot m
$$

What if the meaning of "product" is not clear to everybody?

Formalization IV

If the meaning of "sum", "successor", "one" and "zero" is known, then we can take
Formula $F_{4}: F_{3} \wedge F_{4}^{\prime} \wedge F_{4}^{\prime \prime}$

$$
\begin{aligned}
F_{4}^{\prime} & =\forall x \operatorname{prod}(x, z e r o)=\text { zero } \\
F_{4}^{\prime \prime} & =\forall x \forall y \operatorname{prod}(x, \operatorname{succ}(y))=\operatorname{sum}(\operatorname{prod}(x, y), y)
\end{aligned}
$$

Structure \mathcal{A}_{4}

$$
\begin{aligned}
U_{\mathcal{A}_{4}} & =\mathbb{N} \\
G t^{\mathcal{A}_{4}} & =\{(n, m) \in \mathbb{N} \mid n>m\} \\
\text { one }^{\mathcal{A}_{4}} & =1 \quad \text { zero }^{\mathcal{A}_{4}}=0 \\
\operatorname{sum}^{\mathcal{A}_{4}}(n, m) & =n+m \\
\operatorname{succ}^{\mathcal{A}_{4}}(n) & =n+1
\end{aligned}
$$

What if the meaning of "sum" is not clear to everybody?

Formalization V

Formalization VI

We can take
Formula $F_{5}: F_{4} \wedge F_{5}^{\prime} \wedge F_{5}^{\prime \prime}$

$$
\begin{aligned}
F_{5}^{\prime} & =\forall x \operatorname{sum}(x, z e r o)=x \\
F_{5}^{\prime \prime} & =\forall x \forall y \operatorname{sum}(x, \operatorname{succ}(y))=\operatorname{succ}(\operatorname{sum}(x, y))
\end{aligned}
$$

Structure $\mathcal{A}_{5}: \quad U_{\mathcal{A}_{5}}=\mathbb{N}$

$$
\begin{aligned}
G t^{\mathcal{A}_{5}} & =\{(n, m) \in \mathbb{N} \mid n>m\} \\
\text { one }^{\mathcal{A}_{5}} & =1 \quad \text { zero }^{\mathcal{A}_{5}}=0 \\
\operatorname{succ}^{\mathcal{A}_{5}}(n) & =n+1
\end{aligned}
$$

What if the meaning of "greater than" and "one" is not clear to everybody?

We can take

Formula $F_{6}: F_{5} \wedge F_{6}^{\prime} \wedge F_{6}^{\prime \prime}$

$$
\begin{aligned}
F_{6}^{\prime} & =\operatorname{succ}(\text { zero })=\text { one } \\
F_{6}^{\prime \prime} & =\forall x \forall y(\operatorname{Gt}(x, y) \leftrightarrow \exists z(\operatorname{sum}(y, z)=x \wedge \neg(z=\text { zero }))
\end{aligned}
$$

Structure $\mathcal{A}_{6}: \quad U_{\mathcal{A}_{6}}=\mathbb{N}$

$$
\text { zero }^{\mathcal{A}_{6}}=0
$$

$$
\operatorname{succ}^{\mathcal{A}_{6}}(n)=n+1
$$

