
Syntax of predicate logic: variables and terms

Variables are expressions of the form xi mit i = 1, 2, 3 . . ..

Predicate symbols are expressions of the form P k
i , where

i = 1, 2, 3 . . . and k = 0, 1, 2 . . ..

Function symbols are expressions of the form fk
i , where i = 1, 2, 3 . . .

und k = 0, 1, 2 . . ..

We call i the (identification) index and k die arity of the symbol.

Terms are inductively defined as follows:

(1) Variables are terms.

(2) Function symbols of arity 0 are terms.

(3) If f is a function symbol with arity k ≥ 1 and t1, . . . , tk are

terms then f(t1, . . . , tk) is a term.

Function symbols of arity 0 are called constants.

1

Syntax of predicate logic: formulas

Formulas (of predicate logic) are inductively defined as follows:.

(1) Predicate symbols of arity 0 are formulas.

(2) If P is a predicate symbol of arity k ≥ 1 and t1, . . . , tk are terms

then P (t1, . . . , tk) is a formula.

(3) If F is a formula, then ¬F is also a formula.

(4) If F and G are formulas, then (F ∧G) and (F ∨G) are also

formulas.

(5) If x is a variable and F is a formula, then ∃x F and ∀x F are

also formulas. The symbols ∃ and ∀ are called the existential

and the universal quantifier, respectively.

Formulas of the form P for some predicate symbol of arity 0 or of the

form P (t1, . . . , tk) are called atomic formulas. The syntax tree and

the subformulas of a formula are defined as usual.
2

Free and bounded variables, closed formulas

A variable x occurs in a formula F if it appears in some term of F .

An occurrence of a variable in a formula is either free or bounded.

An occurrence of x in F is bounded if it belongs to some subformula

of F of the form ∃xG or ∀xG; the smallest such subformula is the

scope of the occurrence. Otherwise the occurrence is free.

A formula without any free occurrence of any variable is closed.

The matrix of a formula F is the formula obtained by removing from

F every occurrence of the quantifiers ∃ and ∀, together with the

(occurrence of a) variable following them. The matrix of F is denoted

by F ∗.

3

Exercise

NF: non-formula F: formula, but not closed C: closed

NF F C

∀x P (a)

∀x∃y (Q(x, y) ∨R(x, y))

∀x Q(x, x) → ∃x Q(x, y)

∀x P (x) ∨ ∀x Q(x, x)

∀x (P (y) ∧ ∀y P (x))

P (x) → ∃x Q(x, P (x))

∀f ∃x P (f(x))

4



NF: non-formula F: formula, but not closed C: closed

NF F C

∀x (¬∀y Q(x, y) ∧R(x, y))

∃z (Q(z, x) ∨R(y, z)) → ∃y (R(x, y) ∧Q(x, z))

∃x (¬P (x) ∨ P (f(a)))

P (x) → ∃x P (x)

∃x∀y ((P (y) → Q(x, y)) ∨ ¬P (x))

∃x∀x Q(x, x)

5

Semantics of predicate logic: structures

A structure is a pair A = (UA, IA), where UA is an arbitrary,

nonempty set called the ground set or universe of A, and IA is a

partial function that maps

• predicate symbols of arity k ≥ 1 to predicates over UA of arity k

(i.e., to functions of type Uk
A → {0, 1} or, equivalently, to

subsets of Uk
A),

• predicate symbols of arity 0 to either 0 or 1

• function symbols of arity k ≥ 1 to functions over UA of arity k

(i.e., to functions of type Uk
A → UA),

• constants f of arity 0 to elements of the universe UA, and

• variables x to elements of the universe UA.

6

In other words:

• The domain of IA is a subset of

{P k
i , fk

i , xi | i = 1, 2, 3, . . . , k = 0, 1, 2., . . .}.
• The image of IA is a subset of the set of all predicates and

functions over UA and elements of UA.

We abbreviate IA(P ) to PA, IA(f) to fA, andIA(x) to xA.

Let F be a formula and let A = (UA, IA) be a structure.

A is suitable for F if all predicate and function symbols occurring in

F and all variables occurring free in F belong to the domain of IA.

7

Evaluation of a formula in a structure

Let F be a formula and let A be a structure suitable for F . For every

term t that can be constructed from variables and function symbols

that appear in F , we define the value of t in the structure A, denoted

by A(t). The definition is inductive:

(1) If t = x for some variable x), then A(t) = xA.

(2) If t = f(t1, . . . , tk) for some function symbol f of arity k and

terms t1, . . . , tk, then A(t) = fA(A(t1), . . . ,A(tk)).

(3) If t = a for some constant a, then A(t) = aA.

8



Analogously, we define inductively the (truth-)value of a formula F in

the structure A, denoted by A(F ):

• If F = P (t1, . . . , tk) for some predicate symbol P of arity k and

terms t1, . . . , tk then

A(F ) =

{
1 if (A(t1), . . . ,A(tk)) ∈ PA

0 otherwise

• If F = ¬G for some formula G then

A(F ) =

{
1 if A(G) = 0

0 otherwise

9

• If F = (G ∧H) for some formulas G and H then

A(F ) =

{
1 if A(G) = 1 and A(H) = 1

0 otherwise

• If F = (G ∨H) for some formulas G and H then

A(F ) =

{
1 if A(G) = 1 or A(H) = 1

0 otherwise

10

• If F = ∀x G for some formula G and variable x then

A(F ) =

{
1 if for every d ∈ UA : A[x/d](G) = 1

0 otherwise

• If F = ∃x G for some formula G and variable x then

A(F ) =

{
1 if there exists d ∈ UA such that: A[x/d](G) = 1

0 otherwise

where A[x/d] denotes the structure A′
that coincides with A

everywhere, but (possibly) in the definition of xA′
: it holds xA′

= d,

whether x belongs to the domain of IA or not.

11

Model, validity, satisfiability

We write A |= F to denote that the structure A is suitable for the

formula F and A(F ) = 1 holds. We say that F holds in A or that A
is a model of F .

If every structure suitable for F is a model of F , then we write |= F

and say that F ist valid.

If F has at least one model then we say that F is satisfiable.

12



Exercise

V: valid S: satisfiable, but not valid U: unsatisfiable

V S U

∀x P (a)

∃x (¬P (x) ∨ P (a))

P (a) → ∃x P (x)

P (x) → ∃x P (x)

∀x P (x) → ∃x P (x)

∀x P (x) ∧ ¬∀y P (y)

13

V: valid S: satisfiable, but not valid U: unsatisfiable

V S U

∀x (P (x, x) → ∃x∀y P (x, y))

∀x∀y (x = y → f(x) = f(y))

∀x∀y (f(x) = f(y) → x = y)

∃x∃y∃z (f(x) = y ∧ f(x) = z ∧ y 6= z)

14

Consequence and equivalence

A formula G is a consequence of the formulas F1, . . . , Fk if every

structure suitable for F1, . . . , Fk and for G that is model of

{F1, . . . , Fk} is also model of G.

We write F1, . . . , Fk |= G to denote that G is a consequence of

F1, . . . , Fk.

Two formulas F and G are (semantically) equivalent if every

structure A suitable for both F and G satisfies A(F ) = A(G). We

then write F ≡ G.

15

Exercise

(1) ∀x P (x) ∨ ∀x Q(x, x)

(2) ∀x (P (x) ∨Q(x, x))

(3) ∀x (∀zP (z) ∨ ∀y Q(x, y))

Y N

1 |= 2

2 |= 3

3 |= 1

16



Exercise

(1) ∃y∀x P (x, y)

(2) ∀x∃y P (x, y)

Y N

1 |= 2

2 |= 1

17

Exercise

Y N

∀x∀y F ≡ ∀y∀x F

∀x∃y F ≡ ∃x∀y F

∃x∃y F ≡ ∃y∃x F

∀x F ∨ ∀x G ≡ ∀x (F ∨G)

∀x F ∧ ∀x G ≡ ∀x (F ∧G)

∃x F ∨ ∃x G ≡ ∃x (F ∨G)

∃x F ∧ ∃x G ≡ ∃x (F ∧G)

18

Predicate logic with equality

Predicate logic

+

distinguished predicate symbol “=” of arity 2.

Semantics : a structure A of predicate logic with equality always

maps the predicate symbol = to the identity relation:

A(=) = {(d, d) | d ∈ UA} .

19

Formalizing statements

A statement in natural language is formalized as a formula F and a

structure A. The formalizer claims that the statement is true iff F is

true in some adequate structure extending A.

A fixes the meaning of the predicates that are taken as known. F

may contain definitions of predicates or functions (see example in the

next slides).

The names of the predicate symbols are chosen to suggest their

meaning in the structure. The structure is often omitted, because it is

assumed to be known (danger!).

We consider the following example

There are infinitely many prime numbers

20



Formalization I

If the meaning of “prime” and “‘greater-than” are assumed to be

known, then we can take

Formula F1: ∀x∃y (Pri(y) ∧Gt(y, x))

Structure A1: UA1 = N
PriA1 = {n ∈ N | n is prime}
GtA1 = {(n,m) ∈ N | n > m}

What if the meaning of “prime” is not clear to everybody?

21

Formalization II

If the meaning of “divides” is known , then we can take

Formula F2: F1 ∧∀x (Pri(x) ↔ ∀y Div(y, x) → (y = x∨ y = one))

Structure A2: UA2 = N
GtA2 = {(n,m) ∈ N | n > m}

DivA2 = {(n,m) ∈ N | n divides m}
oneA2 = 1

A2 does not interpret Pri , but an structure that extends A2 and

interprets Pri can only satisfy F2 if it assigns to Pri “the right

meaning”.

What if the meaning of “divides” is not clear to everybody?

22

Formalization III

If the meaning of “product” is known , then we can take

Formula F3: F2 ∧ ∀x∀y (Div(x, y) ↔ ∃z prod(x, z) = y)

Structure A3: UA3 = N
GtA3 = {(n,m) ∈ N | n > m}

oneA3 = 1

prodA3(n,m) = n ·m

What if the meaning of “product” is not clear to everybody?

23

Formalization IV

If the meaning of “sum”, “successor”, “one” and “zero” is known,

then we can take

Formula F4: F3 ∧ F ′
4 ∧ F ′′

4

F ′
4 = ∀x prod(x, zero) = zero

F ′′
4 = ∀x∀y prod(x, succ(y)) = sum(prod(x, y), y)

Structure A4: UA4 = N
GtA4 = {(n,m) ∈ N | n > m}

oneA4 = 1 zeroA4 = 0

sumA4(n,m) = n + m

succA4(n) = n + 1

What if the meaning of “sum” is not clear to everybody?

24



Formalization V

We can take

Formula F5: F4 ∧ F ′
5 ∧ F ′′

5

F ′
5 = ∀x sum(x, zero) = x

F ′′
5 = ∀x∀y sum(x, succ(y)) = succ(sum(x, y))

Structure A5: UA5 = N
GtA5 = {(n,m) ∈ N | n > m}

oneA5 = 1 zeroA5 = 0

succA5(n) = n + 1

What if the meaning of ‘greater than” and “one” is not clear to

everybody?

25

Formalization VI

We can take

Formula F6: F5 ∧ F ′
6 ∧ F ′′

6

F ′
6 = succ(zero) = one

F ′′
6 = ∀x∀y (Gt(x, y) ↔ ∃z (sum(y, z) = x ∧ ¬(z = zero))

Structure A6: UA6 = N
zeroA6 = 0

succA6(n) = n + 1

26


