Predicate logic with equality

Semantics : a structure A of predicate logic with equality always maps the predicate symbol = to the identity relation:

$$\mathcal{A}(=) = \{ (d, d) \mid d \in U_{\mathcal{A}} \} .$$

Expressivity

Fact: A structure is model of $\exists x \forall y \ x=y$ iff its universe is a singleton.

Theorem: Every satisfiable formula of predicate logic has an infinite countable model.

Proof: Let *F* satisfiable. We assume w.l.o.g. that $F = \forall x_1 \dots \forall x_n F^*$ and the variables occurring in F^* are exactly x_1, \dots, x_n . (If necessary bring *F* into Skolem form). We consider two cases: n = 0. Exercise.

n > 0. Let $G = \forall x_1 \dots \forall x_n F^*[x_1/f(x_1)]$, where f is a function symbol that does not occur in F^* . G ist satisfiable (why?) and D(G)is infinite. It follows from the fundamental theorem that G has an infinite model.

Modelling equality

Let F be a formula of predicate logic with equality, and let Eq be a predicate symbol that does not occur in F.

Let G_F be the conjunction of the following formulas:

 $\begin{aligned} &\forall x \; Eq(x,x) \\ &\forall x \forall y \; (Eq(x,y) \to Eq(y,x)) \\ &\forall x \forall y \forall z \; ((Eq(x,y) \land Eq(y,z)) \to Eq(x,z)) \\ &\forall x_1 \dots \forall x_n \forall y \; (Eq(x_i,y) \to Eq(f(x_1,\dots,x_i,\dots,x_n),f(x_1,\dots,y,\dots,x_n))) \\ &\text{ for every function symbol } f \; \text{of } F \; \text{and every } 1 \leq i \leq n \\ &\forall x_1 \dots \forall x_n \forall y (Eq(x_i,y) \to (P(x_1,\dots,x_i,\dots,x_n) \leftrightarrow P(x_1,\dots,y,\dots,x_n))) \\ &\text{ for every predicate symbol } P \; \text{of } F \; \text{und and every } 1 \leq i \leq n \end{aligned}$

Let H_F be the formula obtained from F by substituting every occurrence of "=" by "Eq".

Theorem: The formulas F and $G_F \wedge H_F$ are sat-equivalent.

Proof: We show that if $G_F \wedge H_F$ is satisfiable then F is satisfiable. Let \mathcal{A} be a model of $G_F \wedge H_F$. Then $Eq^{\mathcal{A}}$ is an equivalence relation. For every $d \in U_{\mathcal{A}}$ let [d] be the equivalence class of d. Define the structure \mathcal{B} as follows:

- $U_{\mathcal{B}} = \{ [d] \mid d \in U_{\mathcal{A}} \}.$
- For every function symbol f of F: $f^{\mathcal{B}}([d_1], \dots, [d_n]) = [f^{\mathcal{A}}(d_1, \dots, d_n)]$
- For every predicate symbol P of F: $([d_1], \ldots, [d_n]) \in P^{\mathcal{B}}$ iff $(d_1, \ldots, d_n) \in P^{\mathcal{A}}$

 \mathcal{B} is well defined because $\mathcal{A} \models G_F$.

Since $\mathcal{A} \models H_F$ we get $\mathcal{B} \models F$.

An application

Theorem: Every formula without function symbols of the form $\forall x \exists u \forall y \ F^*$ is sat-equivalent to a formula without function symbols of the form $\forall x \forall y \forall z \exists v \ G^*$.

Proof: Let P be a predicate symbol not occurring in F. Let

 $H = \forall x \forall y \forall z \exists v \ (P(x, v) \land (P(x, y) \to y = v) \land (P(x, z) \to F^*[u/z]))$

It is easy to see that the original formula and H are sat-equivalent Replace y = v by Eq(y, v) in H, add the formulas expressing that Eqis a congruence, convert the resulting formula into prenex form, and let G be the result.

We have that H and G are sat-equivalent, and so the original formula and G are sat-equivalent.