Predicate logic

$+$

```
distinguished predicate symbol " =" of arity 2.
```

Semantics : a structure \mathcal{A} of predicate logic with equality always maps the predicate symbol $=$ to the identity relation:

$$
\mathcal{A}(=)=\left\{(d, d) \mid d \in U_{\mathcal{A}}\right\}
$$

Fact: A structure is model of $\exists x \forall y x=y$ iff its universe is a singleton.
Theorem: Every satisfiable formula of predicate logic has an infinite countable model.

Proof: Let F satisfiable. We assume w.l.o.g. that $F=\forall x_{1} \ldots \forall x_{n} F^{*}$ and the variables occurring in F^{*} are exactly x_{1}, \ldots, x_{n}. (If necessary bring F into Skolem form). We consider two cases:
$n=0$. Exercise.
$n>0$. Let $G=\forall x_{1} \ldots \forall x_{n} F^{*}\left[x_{1} / f\left(x_{1}\right)\right]$, where f is a function symbol that does not occur in F^{*}. G ist satisfiable (why?) and $D(G)$ is infinite. It follows from the fundamental theorem that G has an infinite model.

Modelling equality

Let F be a formula of predicate logic with equality, and let $E q$ be a predicate symbol that does not occur in F.
Let G_{F} be the conjunction of the following formulas:

```
\(\forall x E q(x, x)\)
\(\forall x \forall y(E q(x, y) \rightarrow E q(y, x))\)
\(\forall x \forall y \forall z((E q(x, y) \wedge E q(y, z)) \rightarrow E q(x, z))\)
\(\forall x_{1} \ldots \forall x_{n} \forall y\left(E q\left(x_{i}, y\right) \rightarrow E q\left(f\left(x_{1}, \ldots, x_{i}, \ldots x_{n}\right), f\left(x_{1}, \ldots, y, \ldots, x_{n}\right)\right)\right)\)
```

for every function symbol f of F and every $1 \leq i \leq n$

$$
\forall x_{1} \ldots \forall x_{n} \forall y\left(E q\left(x_{i}, y\right) \rightarrow\left(P\left(x_{1}, \ldots, x_{i}, \ldots, x_{n}\right) \leftrightarrow P\left(x_{1}, \ldots, y, \ldots, x_{n}\right)\right)\right)
$$

for every predicate symbol P of F und and every $1 \leq i \leq n$

Let H_{F} be the formula obtained from F by substituting every occurrence of " $=$ " by " $E q$ ".

Theorem: The formulas F and $G_{F} \wedge H_{F}$ are sat-equivalent.
Proof: We show that if $G_{F} \wedge H_{F}$ is satisfiable then F is satisfiable. Let \mathcal{A} be a model of $G_{F} \wedge H_{F}$. Then $E q^{\mathcal{A}}$ is an equivalence relation. For every $d \in U_{\mathcal{A}}$ let $[d]$ be the equivalence class of d. Define the structure \mathcal{B} as follows:

- $U_{\mathcal{B}}=\left\{[d] \mid d \in U_{\mathcal{A}}\right\}$.
- For every function symbol f of F : $f^{\mathcal{B}}\left(\left[d_{1}\right], \ldots,\left[d_{n}\right]\right)=\left[f^{\mathcal{A}}\left(d_{1}, \ldots, d_{n}\right)\right]$
- For every predicate symbol P of F :

$$
\left(\left[d_{1}\right], \ldots,\left[d_{n}\right]\right) \in P^{\mathcal{B}} \text { iff }\left(d_{1}, \ldots, d_{n}\right) \in P^{\mathcal{A}}
$$

\mathcal{B} is well defined because $\mathcal{A} \models G_{F}$.
Since $\mathcal{A} \models H_{F}$ we get $\mathcal{B} \models F$.

An application

Theorem: Every formula without function symbols of the form $\forall x \exists u \forall y F^{*}$ is sat-equivalent to a formula without function symbols of the form $\forall x \forall y \forall z \exists v G^{*}$.

Proof: Let P be a predicate symbol not occurring in F. Let
$H=\forall x \forall y \forall z \exists v\left(P(x, v) \wedge(P(x, y) \rightarrow y=v) \wedge\left(P(x, z) \rightarrow F^{*}[u / z]\right)\right)$
It is easy to see that the original formula and H are sat-equivalent Replace $y=v$ by $E q(y, v)$ in H, add the formulas expressing that $E q$ is a congruence, convert the resulting formula into prenex form, and let G be the result.
We have that H and G are sat-equivalent, and so the original formula and G are sat-equivalent.

