Equivalences

Theorem. Let F and G be arbitrary formulas.
(1) $\neg \forall x F \equiv \exists x \neg F$
$\neg \exists x F \equiv \forall x \neg F$
(2) If x does not occur free in G then:
$(\forall x F \wedge G) \equiv \forall x(F \wedge G)$
$(\forall x F \vee G) \equiv \forall x(F \vee G)$
$(\exists x F \wedge G) \equiv \exists x(F \wedge G)$
$(\exists x F \vee G) \equiv \exists x(F \vee G)$
(3) $(\forall x F \wedge \forall x G) \equiv \forall x(F \wedge G)$ $(\exists x F \vee \exists x G) \equiv \exists x(F \vee G)$
(4) $\forall x \forall y F \equiv \forall y \forall x F$ $\exists x \exists y F \equiv \exists y \exists x F$

Rectified Formulas

A formula is rectified if no variable occurs both bound and free and if all quantifiers in the formula refer to different variables.

Lemma. Let $F=Q x G$ be a formula where $Q \in\{\forall, \exists\}$. Let y be a variable that does not occur free in G. Then $F \equiv Q y G[x / y]$.

Lemma. Every formula is equivalent to a rectified formula.

Prenex form

A formula is in prenex form if it has the form

$$
Q_{1} y_{1} Q_{2} y_{2} \ldots Q_{n} y_{n} F
$$

where $Q_{i} \in\{\exists, \forall\}, n \geq 0$, all the y_{i} are variables, and F contains no quantifiers.

Theorem. Every formula is equivalent to a rectified formula in prenex form (a formula in RPF).

Skolem form

The Skolem form of a formula F in BPF is the result of applying the following algorithm to F :
while F contains an existential quantifier do
Let G be the formula in BPF
such that $F=\forall y_{1} \forall y_{2} \ldots \forall y_{n} \exists z G$
(the block of universal quantifiers may be empty).
Let f be a fresh function symbol of arity n
that does not occur in F.
$F:=\forall y_{1} \forall y_{2} \ldots \forall y_{k} G\left[z / f\left(y_{1}, y_{2}, \ldots, y_{n}\right)\right]$
i.e., cancel the first existential quantifier in F and substitute every occurrence of z in G by $f\left(y_{1}, y_{2}, \ldots, y_{n}\right)$

We say that two formulas are sat-equivalent if they are both satisfiable or unsatisfiable.

Theorem. A formula in BPF and its Skolem form are sat-equivalent.

Clause form

A closed formula is in clause form if it is of the form

$$
\forall y_{1} \forall y_{2} \ldots \forall y_{n} F
$$

where F contains no quantifiers and is in CNF.
A closed formula in clause form can be represented as a set of clauses.
Example: the clause form of $\forall x \forall y((P(x, y) \wedge Q(x)) \wedge P(f(y), a)$ is

$$
\{\{P(x, y), Q(x)\},\{P(f(y), a)\}\}
$$

Converting into clause form up to sat-equivalence

Given: a formula F of predicate logic (with possible occurrences of free variables).

1. Rectify F by systematic renaming of bound variables.

The result is a formula F_{1} equivalent to F.
2. Let $y_{1}, y_{2}, \ldots, y_{n}$ be the variables occurring free in F_{1}.

Produce the formula $F_{2}=\exists y_{1} \exists y_{2} \ldots \exists y_{n} F_{1}$.
F_{2} is sat-equivalent to F_{1} and closed.
3. Produce a formula F_{3} in prenex form equivalent to F_{2}.
4. Eliminate the existential quantifiers in F_{3} by transforming F_{3} into a Skolem formula F_{4}.
The formula F_{4} is sat-equivalent to F_{3}.
5. Convert the matrix of F_{4} into CNF (and write the resulting formula F_{5} as set of clauses).

Exercise

Which formulas are rectified, in prenex, Skolem, or clause form?

	R	P	S	C
$\forall x(\operatorname{Tet}(x) \vee \operatorname{Cube}(x) \vee \operatorname{Dodec}(x))$				
$\exists x \exists y(\operatorname{Cube}(y) \vee \operatorname{BackOf}(x, y))$				
$\forall x(\neg \operatorname{FrontOf}(x, x) \wedge \neg \operatorname{BackOf}(x, x))$				
$\neg \exists x \operatorname{Cube}(x) \leftrightarrow \forall x \neg \operatorname{Cube}(x)$				
$\forall x(\operatorname{Cube}(x) \rightarrow \operatorname{Small}(x)) \rightarrow \forall y(\neg \operatorname{Cube}(y) \rightarrow \neg \operatorname{Small}(y))$				
$(\operatorname{Cube}(a) \wedge \forall x \operatorname{Small}(x)) \rightarrow \operatorname{Small}(a)$				
$\exists x(\operatorname{Larger}(a, x) \wedge \operatorname{Larger}(x, b)) \rightarrow \operatorname{Larger}(a, b)$				

