Equivalences

Rectified Formulas

Theorem. Let F and G be arbitrary formulas.

- (1) $\neg \forall x F \equiv \exists x \neg F$ $\neg \exists x F \equiv \forall x \neg F$
- (2) If x does not occur free in G then: $(\forall xF \land G) \equiv \forall x(F \land G)$ $(\forall xF \lor G) \equiv \forall x(F \lor G)$ $(\exists xF \land G) \equiv \exists x(F \land G)$ $(\exists xF \lor G) \equiv \exists x(F \lor G)$
- (3) $(\forall xF \land \forall xG) \equiv \forall x(F \land G)$ $(\exists xF \lor \exists xG) \equiv \exists x(F \lor G)$
- (4) $\forall x \forall y F \equiv \forall y \forall x F$ $\exists x \exists y F \equiv \exists y \exists x F$

A formula is rectified if no variable occurs both bound and free and if all quantifiers in the formula refer to different variables.

Lemma. Let F = QxG be a formula where $Q \in \{\forall, \exists\}$. Let y be a variable that does not occur free in G. Then $F \equiv QyG[x/y]$.

Lemma. Every formula is equivalent to a rectified formula.

Prenex form	² Skolem form
A formula is in prenex form if it has the form $Q_1y_1Q_2y_2Q_ny_nF$, where $Q_i \in \{\exists, \forall\}, n \ge 0$, all the y_i are variables, and F contains no quantifiers. Theorem. Every formula is equivalent to a rectified formula in prenex form (a formula in RPF).	The Skolem form of a formula F in BPF is the result of applying the following algorithm to F : while F contains an existential quantifier do Let G be the formula in BPF such that $F = \forall y_1 \forall y_2 \dots \forall y_n \exists z \ G$ (the block of universal quantifiers may be empty). Let f be a fresh function symbol of arity n that does not occur in F . $F := \forall y_1 \forall y_2 \dots \forall y_k \ G[z/f(y_1, y_2, \dots, y_n)]$

i.e., cancel the first existential quantifier in F and substitute every occurrence of z in G by $f(y_1, y_2, \ldots, y_n)$

4

A closed formula is in clause form if it is of the form

 $\forall y_1 \forall y_2 \dots \forall y_n F$

where F contains no quantifiers and is in CNF.

A closed formula in clause form can be represented as a set of clauses. Example: the clause form of $\forall x \forall y \ ((P(x, y) \land Q(x)) \land P(f(y), a)$ is

 $\{ \{ P(x,y), Q(x) \}, \{ P(f(y),a) \} \}$

satisfiable or unsatisfiable. Theorem. A formula in **BPF** and its Skolem form are sat-equivalent.

We say that two formulas are sat-equivalent if they are both

Converting into clause form up to sat-equivalence

Given: a formula F of predicate logic (with possible occurrences of free variables).

- 1. Rectify F by systematic renaming of bound variables. The result is a formula F_1 equivalent to F.
- 2. Let y_1, y_2, \ldots, y_n be the variables occurring free in F_1 . Produce the formula $F_2 = \exists y_1 \exists y_2 \ldots \exists y_n F_1$. F_2 is sat-equivalent to F_1 and closed.
- 3. Produce a formula F_3 in prenex form equivalent to F_2 .

- 4. Eliminate the existential quantifiers in F₃ by transforming F₃ into a Skolem formula F₄.
 The formula F₄ is sat-equivalent to F₃.
- 5. Convert the matrix of F_4 into **CNF** (and write the resulting formula F_5 as set of clauses).

5

Exercise

Which formulas are rectified, in prenex, Skolem, or clause form?

	R	Ρ	S	С
$\forall x (\mathit{Tet}(x) \lor \mathit{Cube}(x) \lor \mathit{Dodec}(x))$				
$\exists x \exists y (\textit{Cube}(y) \lor \textit{BackOf}(x, y))$				
$\forall x (\neg \textit{FrontOf}(x, x) \land \neg \textit{BackOf}(x, x))$				
$\neg \exists x \textit{Cube}(x) \leftrightarrow \forall x \neg \textit{Cube}(x)$				
$\forall x (\textit{Cube}(x) \rightarrow \textit{Small}(x)) \rightarrow \forall y (\neg \textit{Cube}(y) \rightarrow \neg \textit{Small}(y))$				
$(\textit{Cube}(a) \land \forall x \textit{Small}(x)) \to \textit{Small}(a)$				
$\exists x (\textit{Larger}(a, x) \land \textit{Larger}(x, b)) \rightarrow \textit{Larger}(a, b)$				

9