Hilbert Calculus

Resolution Calculus vs. Hilbert Calculus

Two kinds of calculi:

- Calculi as basis for automatic techniques
 Examples: Resolution, DPLL, BDDs
- Calculi formalizing mathematical reasoning (axiom, hypothesis, lemma ..., derivation)
 Examples: Hilbert Calculus, Natural Deduction

Resolution calculus	Hilbert calculus
Proves unsatisfiability	Proves consequence $(F_1, \ldots, F_n \models G)$
Formulas in CNF	Formulas with \neg und $ ightarrow$
Syntactic derivation	Syntactic derivation of $F_1, \ldots, F_n \vdash G$
of the empty clause from ${\cal F}$	from axioms and hypothesis
Goal:	Goal:
automatic proofs	model mathematical reasoning
Completeness proof	Completeness proof
comparatively simple	comparatively involved

Recall: Consequence

Preliminaries

A formula G is a consequence or follows from the formulas F_1, \ldots, F_k if every model \mathcal{A} of F_1, \ldots, F_k that is suitable for G is also a model of G

If G is a consequence of F_1, \ldots, F_k then we write $F_1, \ldots, F_k \models G$.

In the following slides, formulas contain only the operators \neg und \rightarrow . Recall: $F \lor G \equiv \neg F \to G$ und $F \land G \equiv \neg (F \to \neg G)$.

The calculus defines a syntactic consequence relation \vdash (notation: $F_1, \ldots, F_n \vdash G$), intended to "mirror" semantic consequence.

We will have:

$$F_1, \ldots, F_n \vdash G$$
 iff $F_1, \ldots, F_n \models G$

(syntactic consequence and semantic consequence will coincide).

Axiom schemes

Derivations in Hilbert calculus

We take five axiom schemes or axioms, with F, G as place-holders for formulas:

(1)
$$F \rightarrow (G \rightarrow F)$$

(2)
$$(F \rightarrow (G \rightarrow H)) \rightarrow ((F \rightarrow G) \rightarrow (F \rightarrow H))$$

(3)
$$(\neg F \rightarrow \neg G) \rightarrow (G \rightarrow F)$$

(4)
$$F \rightarrow (\neg F \rightarrow G)$$

(5)
$$(\neg F \rightarrow F) \rightarrow F$$

An instance of an axiom is the result of substituting the place-holders of the axiom by formulas.

Easy to see: all instances are valid formulas.

Example: Instance of (4) with $\neg A \to B$ and $\neg C$ for F and G: $(\neg A \to B) \to (\neg (\neg A \to B) \to \neg C)$

Let S be a set of formulas - also called hypothesis - and let F be a formula. We write $S \vdash F$ and say that F is a syntactic consequence of S in Hilbert Calculus if one of these conditions holds:

Axiom: F is an instance of an axiom

Hypothesis: $F \in S$

Modus Ponens: $S \vdash G \rightarrow F$ and $S \vdash G$, i.e. both $G \rightarrow F$

and G are syntactic consequences of S.

Modus Ponens

Example of derivation

Derivation rule of the calculus, allowing to generate new syntactic consequences from old ones:

$$S \vdash G \to F$$

$$S \vdash G$$

$$S \vdash F$$

1. $\vdash A \rightarrow ((B \rightarrow A) \rightarrow A)$ Instance of Axiom (1)

 $2. \vdash (A \to ((B \to A) \to A))$

 $((A \to (B \to A)) \to (A \to A))$

Instance of Axiom (2)

3. $\vdash (A \rightarrow (B \rightarrow A)) \rightarrow (A \rightarrow A)$

Modus Ponens with 1. & 2.

 $4. \vdash A \to (B \to A)$

Instance of Axiom (1)

5. $\vdash A \rightarrow A$

Modus Ponens with 3. & 4.

Remark: The same derivation works for arbitrary formulas F,G instead of A,B, and so we can derive $\vdash F \to F$ for any formula F.

We can therefore see a derivation as a way of producing new axioms (the axiom $F \to F$ in this case).

Correctness and completeness

Correctness proof of the Hilbert calculus

Correctness: If F is a syntactic consequence from S, then F is a consequence of S.

Completeness: If F is a consequence of S, then F is a syntactic consequence from S.

Correctness Theorem: Let F be an arbitrary formula, and let S be a set of formulas such that $S \vdash F$. Then $S \models F$.

Proof: Easy induction on the length of the derivation of $S \vdash F$.

Completeness proof: preliminaries

Wie wish to prove: if $S \models F$, then $S \vdash F$. How could this work?

- Induction on the structure of the formula F? For the induction basis we would have to prove for an atomic formula A:

if
$$S \models A$$
 then $S \vdash A$.

But how do we construct a derivation of $S \vdash A$ if all we know is $S \models A$?

Completeness - Proof sketch

(1) $S \models F$ iff $S \cup \{\neg F\}$ is unsatisfiable. (Trivial)

Completeness - Proof sketch

Completeness - Proof sketch

- (1) $S \models F$ iff $S \cup \{\neg F\}$ is unsatisfiable. (Trivial)
- (2) Definition: S is inconsistent if there is a formula F such that $S \vdash F$ and $S \vdash \neg F$.

- (1) $S \models F$ iff $S \cup \{\neg F\}$ is unsatisfiable. (Trivial)
- (2) Definition: S is inconsistent if there is a formula F such that $S \vdash F$ and $S \vdash \neg F$.
- (3) $S \vdash F$ iff $S \cup \{\neg F\}$ is inconsistent. (To be proved!)

Completeness - Proof sketch

- (1) $S \models F$ iff $S \cup \{\neg F\}$ is unsatisfiable. (Trivial)
- (2) Definition: S is inconsistent if there is a formula F such that $S \vdash F$ and $S \vdash \neg F$.
- (3) $S \vdash F$ iff $S \cup \{\neg F\}$ is inconsistent. (To be proved!)
- (4) Unsatisfiable sets are inconsistent. (To be proved!)

Completeness - Proof sketch

- (1) $S \models F$ iff $S \cup \{\neg F\}$ is unsatisfiable. (Trivial)
- (2) Definition: S is inconsistent if there is a formula F such that $S \vdash F$ and $S \vdash \neg F$.
- (3) $S \vdash F$ iff $S \cup \{\neg F\}$ is inconsistent. (To be proved!)
- (4) Unsatisfiable sets are inconsistent. (To be proved!)

Proof sketch: Assume $S \models F$.

Then $S \cup \{\neg F\}$ is unsatisfiable by (1).

Then $S \cup \{\neg F\}$ is inconsistent by (4).

Then $S \vdash F$ by (3).

Completeness - Proof sketch

(In)consistency

- (1) $S \models F \text{ iff } S \cup \{\neg F\} \text{ is unsatisfiable. (Trivial)}$
- (2) Definition: S is inconsistent if there is a formula F such that $S \vdash F$ and $S \vdash \neg F$.
- (3) $S \vdash F$ iff $S \cup \{\neg F\}$ is inconsistent. (To be proved!)
- (4) Unsatisfiable sets are inconsistent. (To be proved!)

Proof sketch: Assume $S \models F$.

Then $S \cup \{\neg F\}$ is unsatisfiable by (1).

Then $S \cup \{\neg F\}$ is inconsistent by (4).

Then $S \vdash F$ by (3).

We prove (3) und (4).

Definition: A set S of formulas is inconsistent if there is a formula F such that $S \vdash F$ and $S \vdash \neg F$, otherwise it is consistent.

Observe: inconsistency is a purely syntactic notion!!

Examples of inconsistent sets

- $\bullet \{A, \neg A\}$
- $\{\neg(A \to (B \to A))\}$
- $\{\neg B, \neg B \rightarrow B\}$
- $\{C, \neg(\neg C \to D)\}$

Important tool: the Deduction Theorem

Theorem: $S \cup \{F\} \vdash G \text{ iff } S \vdash F \rightarrow G.$

Proof: Assume $S \vdash F \to G$. Then $S \cup \{F\} \vdash F \to G$. Using $S \cup \{F\} \vdash F$ and Modus Ponens we get $S \cup \{F\} \vdash G$.

Assume $S \cup \{F\} \vdash G$. Proof by induction on the derivation (length):

Axiom/Hypothesis: G is instance of an axiom or $G \in S \cup \{F\}$.

If F = G use example of derivation to prove $S \vdash F \to F$.

Otherwise $S \vdash G$ and by Axiom (1) $S \vdash G \rightarrow (F \rightarrow G)$.

By Modus Ponens we get $S \vdash F \rightarrow G$.

Modus Ponens: Then $S \cup \{F\} \vdash G$ is derived by Modus Ponens from some $S \cup \{F\} \vdash H \to G$ and $S \cup \{F\} \vdash H$. By ind. hyp we have $S \vdash F \to (H \to G)$ and $S \vdash F \to H$.

From Axiom (2) we get

 $S \vdash (F \to (H \to G)) \to ((F \to H) \to (F \to G)).$

Modus Ponens yields $S \vdash F \rightarrow G$.

Consequences of the Deduction Theorem

Completeness - Proof of (3)

Lemma I: $S \cup \{\neg F\} \vdash F \text{ iff } S \vdash F$

Proof: Assume $S \cup \{\neg F\} \vdash F$ holds.

By the Deduction Theorem $S \vdash \neg F \rightarrow F$.

Using Axiom (5) we get $S \vdash (\neg F \rightarrow F) \rightarrow F$.

By Modus Ponens we get $S \vdash F$.

The other direction is trivial.

Assertion (3): $S \vdash F \text{ iff } S \cup \{\neg F\} \text{ is inconsistent.}$

Proof: Assume $S \vdash F$.

Then $S \cup \{\neg F\} \vdash F$.

Since $S \cup \{\neg F\} \vdash \neg F$, the set $S \cup \{\neg F\}$ is inconsistent.

Assume $S \cup \{\neg F\}$ is inconsistent.

Then there is a formula G s.t. $S \cup \{\neg F\} \vdash G$ and $S \cup \{\neg F\} \vdash \neg G$.

By Axiom (4) we get $S \cup \{\neg F\} \vdash G \rightarrow (\neg G \rightarrow F)$.

Two applications of Modus Ponens yield $S \cup \{\neg F\} \vdash F$.

Lemma I yields $S \vdash F$.

Completeness - Proof of (4)

Completeness - Proof of (4)

Recall assertion (4):

Unsatisfiable sets are inconsistent.

We prove the equivalent assertion:

Consistent sets are satisfiable.

How do we prove an assertion like this?

Recall assertion (4):

Unsatisfiable sets are inconsistent.

We prove the equivalent assertion:

Consistent sets are satisfiable.

How do we prove an assertion like this?

Answer: Construct a satisfying truth assignment ${\cal A}$ as follows:

If $A \in S$ then set $\mathcal{A}(A) := 1$.

If $\neg A \in S$ then set $\mathcal{A}(A) := 0$.

Completeness - Proof of (4)

Recall assertion (4):

Unsatisfiable sets are inconsistent.

We prove the equivalent assertion:

Consistent sets are satisfiable.

How do we prove an assertion like this?

Answer: Construct a satisfying truth assignment ${\cal A}$ as follows:

If $A \in S$ then set $\mathcal{A}(A) := 1$.

If $\neg A \in S$ then set $\mathcal{A}(A) := 0$.

Problem: What do we do if neither $A \in S$ nor $\neg A \in S$?

Perhaps we can avoid the problem?

Definition: A set S of formulas is maximally consistent if it is consistent and for every formula F either $F \in S$ or $\neg F \in S$.

We extend S to a maximally consistent set $\overline{S} \supseteq S$.

Perhaps we can avoid the problem?

Definition: A set S of formulas is maximally consistent if it is consistent and for every formula F either $F \in S$ or $\neg F \in S$.

Completeness - Proof sketch for (4)

(4) Consistent sets are satisfiable.

Completeness - Proof sketch for (4)

Completeness - Proof sketch for (4)

- (4) Consistent sets are satisfiable.
- (4.1) Every consistent set can be extended to a maximally consistent set.
- (4) Consistent sets are satisfiable.
- (4.1) Every consistent set can be extended to a maximally consistent set.
- (4.2) Let S be maximally consistent and let $\mathcal A$ be the assignment given by $\mathcal A(A)=1$ if $A\in S$ and $\mathcal A(A)=0$ if $A\notin S$. Then $\mathcal A$ satisfies S.

Proof of (4.1) - Preliminaries

Lemma II: Let S be a consistent set and let F be an arbitrary formula. Then: $S \cup \{F\}$ or $S \cup \{\neg F\}$ (or both) are consistent.

Proof: Assume S is consistent but both $S \cup \{F\}$ and $S \cup \{\neg F\}$ are inconsistent.

Since $S \cup \{\neg F\}$ is inconsistent we have $S \vdash F$ by Assertion (3). Since $S \cup \{F\}$ is inconsistent there is a formula G s.t. $S \cup \{F\} \vdash G$ and $S \cup \{F\} \vdash \neg G$, and the Deduction Theorem yields $S \vdash F \to G$ and $S \vdash F \to \neg G$.

Modus Ponens yields $S \vdash G$ and $S \vdash \neg G$.

This contradicts the assumption that S is consistent.

Proof of (4.1)

Assertion (4.1): Every consistent set can be extended to a maximally consistent set.

Proof: Let $F_0, F_1, F_2 \dots$ be an enumeration of all formulas. Let $S_0 = S$ and

$$S_{i+1} = \begin{cases} S_i \cup \{F_i\} & \text{if } S_i \cup \{F_i\} \text{ consistent} \\ S_i \cup \{\neg F_i\} & \text{if } S_i \cup \{\neg F_i\} \text{ consistent} \end{cases}$$

(this is well defined by Lemma II)

By definition, every S_i is consistent.

Let $\overline{S} = \bigcup_{i=1}^{\infty} S_i$. If \overline{S} were inconsistent, some finite subset would also be inconsistent. So \overline{S} is consistent.

By definition, \overline{S} is maximally consistent.

Proof of (4.2) - Preliminaries

Lemma III: Let S be a maximally consistent set:

- (1) For every formula $F: F \in S$ iff $S \vdash F$.
- (2) For every formula $F: \neg F \in S$ iff $F \notin S$.
- (3) For every two formulas $F,G:F\to G\in S$ iff $F\not\in S$ or $G\in S$.

Proof: We prove only: if $F \not\in S$ then $F \to G \in S$ (others similar). From $\neg F \in S$ we get:

1.
$$S \vdash \neg F$$

2.
$$S \vdash \neg F \rightarrow (\neg G \rightarrow \neg F)$$

3.
$$S \vdash \neg G \rightarrow \neg F$$

4.
$$S \vdash (\neg G \rightarrow \neg F) \rightarrow (F \rightarrow G)$$

5.
$$S \vdash F \rightarrow G$$

because $\neg F \in S$

Axiom (1)

Modus Ponens to 1. & 2.

Axiom (3)

Modus Ponens to 3. & 4.

A Hilbert Calculus for predicate logic

We extend formulas by allowing universal quantification.

Three new axiom schemes:

- (6) $(\forall x \ F) \to F[x/t]$ for every term t.
- (7) $(\forall x \ (F \to G)) \to (\forall x \ F \to \forall x \ G).$
- (8) $F \to \forall x \ F$ if x does not occur free in F.

Theorem: The extension of the Hilbert Calculus is correct and complete for predicate logic.

Proof of (4.2)

Assertion (4.2): Let S by maximally consistent, and let A be the assignment given by: A(A) = 1 iff $A \in \overline{S}$. Then A satisfies S.

Proof: Let F be a formula. We prove: $\mathcal{A}(F)=1$ iff $F\in \overline{S}$. By induction on the structure of F (and using Lemma III):

Atomic formulas: F = A. Easy.

Negation: $F = \neg G$. We have: $\mathcal{A}(F) = 1$ iff $\mathcal{A}(G) = 0$ iff $G \notin \overline{S}$ iff $\neg G \in \overline{S}$ iff $F \in \overline{S}$.

Implication: $F = F_1 \to F_2$. We have: $\mathcal{A}(F) = 1$ iff $\mathcal{A}(F_1 \to F_2) = 1$ iff $(\mathcal{A}(F_1) = 0 \text{ or } \mathcal{A}(F_2) = 1)$ iff $(F_1 \notin \overline{S} \text{ or } F_2 \in \overline{S})$ iff $F_1 \to F_2 \in \overline{S}$ iff $F \in \overline{S}$.