Hilbert Calculus

Resolution Calculus vs. Hilbert Calculus

Two kinds of calculi:

- Calculi as basis for automatic techniques Examples: Resolution, DPLL, BDDs
- Calculi formalizing mathematical reasoning (axiom, hypothesis, lemma ..., derivation) Examples: Hilbert Calculus, Natural Deduction

Resolution calculus	Hilbert calculus
Proves unsatisfiability	Proves consequence $\left(F_{1}, \ldots, F_{n} \models G\right)$
Formulas in CNF	Formulas with \neg und \rightarrow
Syntactic derivation of the empty clause from F	Syntactic derivation of $F_{1}, \ldots, F_{n} \vdash G$ from axioms and hypothesis
Goal:	Goal:
automatic proofs	model mathematical reasoning

Recall: Consequence

Preliminaries

A formula G is a consequence or follows from the formulas F_{1}, \ldots, F_{k} if every model \mathcal{A} of F_{1}, \ldots, F_{k} that is suitable for G is also a model of G

If G is a consequence of F_{1}, \ldots, F_{k} then we write $F_{1}, \ldots, F_{k} \models G$.

In the following slides, formulas contain only the operators \neg und \rightarrow Recall: $F \vee G \equiv \neg F \rightarrow G$ und $F \wedge G \equiv \neg(F \rightarrow \neg G)$.

The calculus defines a syntactic consequence relation \vdash (notation: $F_{1}, \ldots, F_{n} \vdash G$), intended to "mirror" semantic consequence.

We will have

$$
F_{1}, \ldots, F_{n} \vdash G \quad \text { iff } \quad F_{1}, \ldots, F_{n} \models G
$$

(syntactic consequence and semantic consequence will coincide).

Axiom schemes

Derivations in Hilbert calculus

We take five axiom schemes or axioms, with F, G as place-holders for formulas:
(1) $F \rightarrow(G \rightarrow F)$
(2) $(F \rightarrow(G \rightarrow H)) \rightarrow((F \rightarrow G) \rightarrow(F \rightarrow H))$
(3) $(\neg F \rightarrow \neg G) \rightarrow(G \rightarrow F)$
(4) $F \rightarrow(\neg F \rightarrow G)$
(5) $(\neg F \rightarrow F) \rightarrow F$

An instance of an axiom is the result of substituting the place-holders of the axiom by formulas.
Easy to see: all instances are valid formulas.
Example: Instance of (4) with $\neg A \rightarrow B$ and $\neg C$ for F and G :

$$
(\neg A \rightarrow B) \rightarrow(\neg(\neg A \rightarrow B) \rightarrow \neg C)
$$

Let S be a set of formulas - also called hypothesis - and let F be a formula. We write $S \vdash F$ and say that F is a syntactic consequence of S in Hilbert Calculus if one of these conditions holds:

Axiom: F is an instance of an axiom
Hypothesis: $F \in S$
Modus Ponens: $\quad S \vdash G \rightarrow F$ and $S \vdash G$, i.e. both $G \rightarrow F$ and G are syntactic consequences of S.

Modus Ponens

Example of derivation

Derivation rule of the calculus, allowing to generate new syntactic consequences from old ones:

$$
\begin{aligned}
S & \vdash G \rightarrow F \\
S & \vdash G \\
\hline S & \vdash F
\end{aligned}
$$

Remark: The same derivation works for arbitrary formulas F, G instead of A, B, and so we can derive $\vdash F \rightarrow F$ for any formula F.
We can therefore see a derivation as a way of producing new axioms (the axiom $F \rightarrow F$ in this case).

Correctness: If F is a syntactic consequence from S, then F is a consequence of S.

Completeness: If F is a consequence of S, then F is a syntactic consequence from S.

Correctness Theorem: Let F be an arbitrary formula, and let S be a set of formulas such that $S \vdash F$. Then $S \models F$.

Proof: Easy induction on the length of the derivation of $S \vdash F$.

Completeness proof: preliminaries

Wie wish to prove: if $S \models F$, then $S \vdash F$. How could this work?

- Induction on the derivation?
\sim there is no derivation!
- Induction on the structure of the formula F ?

For the induction basis we would have to prove for an atomic formula A :
if $S \models A$ then $S \vdash A$.
But how do we construct a derivation of $S \vdash A$ if all we know is $S \models A$?

Completeness - Proof sketch

(1) $S \models F$ iff $S \cup\{\neg F\}$ is unsatisfiable. (Trivial)

Completeness - Proof sketch

Completeness - Proof sketch

(1) $S \models F$ iff $S \cup\{\neg F\}$ is unsatisfiable. (Trivial)
(2) Definition: S is inconsistent if there is a formula F such that $S \vdash F$ and $S \vdash \neg F$.
(1) $S \models F$ iff $S \cup\{\neg F\}$ is unsatisfiable. (Trivial)
(2) Definition: S is inconsistent if there is a formula F such that $S \vdash F$ and $S \vdash \neg F$.
(3) $S \vdash F$ iff $S \cup\{\neg F\}$ is inconsistent. (To be proved!)

Completeness - Proof sketch

(1) $S \models F$ iff $S \cup\{\neg F\}$ is unsatisfiable. (Trivial)
(2) Definition: S is inconsistent if there is a formula F such that $S \vdash F$ and $S \vdash \neg F$.
(3) $S \vdash F$ iff $S \cup\{\neg F\}$ is inconsistent. (To be proved!)
(4) Unsatisfiable sets are inconsistent. (To be proved!)
(1) $S \models F$ iff $S \cup\{\neg F\}$ is unsatisfiable. (Trivial)
(2) Definition: S is inconsistent if there is a formula F such that $S \vdash F$ and $S \vdash \neg F$.
(3) $S \vdash F$ iff $S \cup\{\neg F\}$ is inconsistent. (To be proved!)
(4) Unsatisfiable sets are inconsistent. (To be proved!)

Proof sketch: Assume $S \models F$.
Then $S \cup\{\neg F\}$ is unsatisfiable by (1).
Then $S \cup\{\neg F\}$ is inconsistent by (4).
Then $S \vdash F$ by (3).

Completeness - Proof sketch

(In)consistency

(1) $S \models F$ iff $S \cup\{\neg F\}$ is unsatisfiable. (Trivial)
(2) Definition: S is inconsistent if there is a formula F such that $S \vdash F$ and $S \vdash \neg F$.
(3) $S \vdash F$ iff $S \cup\{\neg F\}$ is inconsistent. (To be proved!)
(4) Unsatisfiable sets are inconsistent. (To be proved!)

Proof sketch: Assume $S \models F$.
Then $S \cup\{\neg F\}$ is unsatisfiable by (1).
Then $S \cup\{\neg F\}$ is inconsistent by (4).
Then $S \vdash F$ by (3).
We prove (3) und (4).

Definition: A set S of formulas is inconsistent if there is a formula F such that $S \vdash F$ and $S \vdash \neg F$, otherwise it is consistent.

Observe: inconsistency is a purely syntactic notion!!

Examples of inconsistent sets

- $\{A, \neg A\}$
- $\{\neg(A \rightarrow(B \rightarrow A))\}$
- $\{\neg B, \neg B \rightarrow B\}$
- $\{C, \neg(\neg C \rightarrow D)\}$

Important tool: the Deduction Theorem

Theorem: $\quad S \cup\{F\} \vdash G$ iff $S \vdash F \rightarrow G$.
Proof: Assume $S \vdash F \rightarrow G$. Then $S \cup\{F\} \vdash F \rightarrow G$.
Using $S \cup\{F\} \vdash F$ and Modus Ponens we get $S \cup\{F\} \vdash G$.
Assume $S \cup\{F\} \vdash G$. Proof by induction on the derivation (length):
Axiom/Hypothesis: G is instance of an axiom or $G \in S \cup\{F\}$.
If $F=G$ use example of derivation to prove $S \vdash F \rightarrow F$.
Otherwise $S \vdash G$ and by Axiom (1) $S \vdash G \rightarrow(F \rightarrow G)$.
By Modus Ponens we get $S \vdash F \rightarrow G$.
Modus Ponens: Then $S \cup\{F\} \vdash G$ is derived by Modus Ponens
from some $S \cup\{F\} \vdash H \rightarrow G$ and $S \cup\{F\} \vdash H$.
By ind. hyp we have $S \vdash F \rightarrow(H \rightarrow G)$ and $S \vdash F \rightarrow H$.
From Axiom (2) we get
$S \vdash(F \rightarrow(H \rightarrow G)) \rightarrow((F \rightarrow H) \rightarrow(F \rightarrow G))$.
Modus Ponens yields $S \vdash F \rightarrow G$.

Lemma I: $\quad S \cup\{\neg F\} \vdash F$ iff $S \vdash F$
Proof: Assume $S \cup\{\neg F\} \vdash F$ holds.
By the Deduction Theorem $S \vdash \neg F \rightarrow F$.
Using Axiom (5) we get $S \vdash(\neg F \rightarrow F) \rightarrow F$.
By Modus Ponens we get $S \vdash F$.
The other direction is trivial.

Assertion (3): $\quad S \vdash F$ iff $S \cup\{\neg F\}$ is inconsistent.
Proof: Assume $S \vdash F$.
Then $S \cup\{\neg F\} \vdash F$.
Since $S \cup\{\neg F\} \vdash \neg F$, the set $S \cup\{\neg F\}$ is inconsistent.
Assume $S \cup\{\neg F\}$ is inconsistent.
Then there is a formula G s.t. $S \cup\{\neg F\} \vdash G$ and $S \cup\{\neg F\} \vdash \neg G$.
By Axiom (4) we get $S \cup\{\neg F\} \vdash G \rightarrow(\neg G \rightarrow F)$.
Two applications of Modus Ponens yield $S \cup\{\neg F\} \vdash F$.
Lemma I yields $S \vdash F$.

Completeness - Proof of (4)

Recall assertion (4):
Unsatisfiable sets are inconsistent.
We prove the equivalent assertion:
Consistent sets are satisfiable.
How do we prove an assertion like this?

Completeness - Proof of (4)

Unsatisfiable sets are inconsistent.
We prove the equivalent assertion:
Consistent sets are satisfiable.
How do we prove an assertion like this?
Answer: Construct a satisfying truth assignment \mathcal{A} as follows:

$$
\begin{array}{lll}
\text { If } \quad A \in S & \text { then set } & \mathcal{A}(A):=1 \\
\text { If } & \neg A \in S & \text { then set } \\
\mathcal{A}(A):=0 .
\end{array}
$$

Completeness - Proof of (4)

Recall assertion (4):
Unsatisfiable sets are inconsistent.
We prove the equivalent assertion:
Consistent sets are satisfiable.
How do we prove an assertion like this?
Answer: Construct a satisfying truth assignment \mathcal{A} as follows:

$$
\begin{array}{lll}
\text { If } \quad A \in S & \text { then set } & \mathcal{A}(A):=1 . \\
\text { If } & \neg A \in S & \text { then set } \\
\mathcal{A}(A) & :=0 .
\end{array}
$$

Perhaps we can avoid the problem?
Definition: A set S of formulas is maximally consistent if it is consistent and for every formula F either $F \in S$ or $\neg F \in S$.

Problem: What do we do if neither $A \in S$ nor $\neg A \in S$?

Completeness - Proof sketch for (4)

Perhaps we can avoid the problem?
Definition: A set S of formulas is maximally consistent if it is consistent and for every formula F either $F \in S$ or $\neg F \in S$.

We extend S to a maximally consistent set $\bar{S} \supseteq S$.
(4) Consistent sets are satisfiable.

Completeness - Proof sketch for (4)

Completeness - Proof sketch for (4)

(4) Consistent sets are satisfiable.
(4.1) Every consistent set can be extended to a maximally consistent set.
(4) Consistent sets are satisfiable.
(4.1) Every consistent set can be extended to a maximally consistent set.
(4.2) Let S be maximally consistent and let \mathcal{A} be the assignment given by $\mathcal{A}(A)=1$ if $A \in S$ and $\mathcal{A}(A)=0$ if $A \notin S$.
Then \mathcal{A} satisfies S.

Proof of (4.1) - Preliminaries

Lemma II: Let S be a consistent set and let F be an arbitrary formula. Then: $S \cup\{F\}$ or $S \cup\{\neg F\}$ (or both) are consistent.

Proof: Assume S is consistent but both $S \cup\{F\}$ and $S \cup\{\neg F\}$ are inconsistent.
Since $S \cup\{\neg F\}$ is inconsistent we have $S \vdash F$ by Assertion (3).
Since $S \cup\{F\}$ is inconsistent there is a formula G s.t. $S \cup\{F\} \vdash G$
and $S \cup\{F\} \vdash \neg G$, and the Deduction Theorem yields $S \vdash F \rightarrow G$ and $S \vdash F \rightarrow \neg G$.
Modus Ponens yields $S \vdash G$ and $S \vdash \neg G$.
This contradicts the assumption that S is consistent.

Proof of (4.1)

Assertion (4.1): Every consistent set can be extended to a maximally consistent set.

Proof: Let $F_{0}, F_{1}, F_{2} \ldots$ be an enumeration of all formulas. Let $S_{0}=S$ and

$$
S_{i+1}= \begin{cases}S_{i} \cup\left\{F_{i}\right\} & \text { if } S_{i} \cup\left\{F_{i}\right\} \text { consistent } \\ S_{i} \cup\left\{\neg F_{i}\right\} & \text { if } S_{i} \cup\left\{\neg F_{i}\right\} \text { consistent }\end{cases}
$$

(this is well defined by Lemma II)
By definition, every S_{i} is consistent.
Let $\bar{S}=\bigcup_{i=1}^{\infty} S_{i}$. If \bar{S} were inconsistent, some finite subset would also be inconsistent. So \bar{S} is consistent.
By definition, \bar{S} is maximally consistent.

Lemma III: Let S be a maximally consistent set:
(1) For every formula $F: F \in S$ iff $S \vdash F$.
(2) For every formula $F: \neg F \in S$ iff $F \notin S$.
(3) For every two formulas $F, G: F \rightarrow G \in S$ iff $F \notin S$ or $G \in S$.

Proof: We prove only: if $F \notin S$ then $F \rightarrow G \in S$ (others similar).
From $\neg F \in S$ we get:

1. $S \vdash \neg F$
because $\neg F \in S$
2. $S \vdash \neg F \rightarrow(\neg G \rightarrow \neg F)$
Axiom (1)
3. $S \vdash \neg G \rightarrow \neg F$
4. $S \vdash(\neg G \rightarrow \neg F) \rightarrow(F \rightarrow G)$
Modus Ponens to $1 . \& 2$.
5. $S \vdash F \rightarrow G$
Axiom (3)
Modus Ponens to $3 . \& 4$.

Assertion (4.2): Let S by maximally consistent, and let \mathcal{A} be the assignment given by: $\mathcal{A}(A)=1$ iff $A \in \bar{S}$. Then \mathcal{A} satisfies S.
Proof: Let F be a formula. We prove: $\mathcal{A}(F)=1$ iff $F \in \bar{S}$. By induction on the structure of F (and using Lemma III):
Atomic formulas: $F=A$. Easy.
Negation: $F=\neg G$. We have: $\mathcal{A}(F)=1$ iff $\mathcal{A}(G)=0$ iff $G \notin \bar{S}$ iff $\neg G \in \bar{S}$ iff $F \in \bar{S}$.
Implication: $F=F_{1} \rightarrow F_{2}$. We have: $\mathcal{A}(F)=1$ iff

$$
\mathcal{A}\left(F_{1} \rightarrow F_{2}\right)=1 \text { iff }\left(\mathcal{A}\left(F_{1}\right)=0 \text { or } \mathcal{A}\left(F_{2}\right)=1\right) \text { iff }
$$

$$
\left(F_{1} \notin \bar{S} \text { or } F_{2} \in \bar{S}\right) \text { iff } F_{1} \rightarrow F_{2} \in \bar{S} \text { iff } F \in \bar{S}
$$

A Hilbert Calculus for predicate logic

We extend formulas by allowing universal quantification.
Three new axiom schemes:
(6) $(\forall x F) \rightarrow F[x / t] \quad$ for every term t.
(7) $(\forall x(F \rightarrow G)) \rightarrow(\forall x F \rightarrow \forall x G)$.
(8) $F \rightarrow \forall x F \quad$ if x does not occur free in F.

Theorem: The extension of the Hilbert Calculus is correct and complete for predicate logic.

