Hilbert Calculus Resolution Calculus vs. Hilbert Calculus

Resolution calculus Hilbert calculus
Two kinds of caleul:: Proves unsatisfiability Proves consequence (Fi, ..., F, = G)
Formulas in CNF Formulas with — und —
e Calculi as basis for. automatic techniques Syntactic derivation Syntactic derivation of Fi,... . F, -G
Examples: Resolution, DPLL, BDDs ) )
of the empty clause from F from axioms and hypothesis
e Calculi formalizing mathematical reasoning
. ) o Goal: Goal:
(axiom, hypothesis, lemma ..., derivation ) _ _ _
Examples: Hilbert Calculus, Natural Deduction automatic proofs model mathematical reasoning
Completeness proof Completeness proof
comparatively simple comparatively involved
Recall: Consequence Preliminaries

In the following slides, formulas contain only the operators — und —.
Recall: FVG=-F—Gund FANG=~(F — -G).

. The calculus defines a syntactic consequence relation
A formula G is a consequence or follows from the formulas y 9

Fy,..., Fy if every model A of F,..., F}, that is suitable for G is (notation: /..., ), I- (7}, intended to “mirror” semantic
also a model of G consequence.
If G is a consequence of Fi, ..., Fy then we write F,..., F, = G. We will have:

F,....F,-G iff F,....F,=G

(syntactic consequence and semantic consequence will coincide).



Axiom schemes Derivations in Hilbert calculus

We take five axiom schemes or axioms, with F' G as place-holders for

formulas:
(1) F—(G—F)

Let S be a set of formulas - also called hypothesis - and let F' be a
(2) (F—(G—H) = (F—-G6)— (F— H) formula. We write S F F' and say that F' is a syntactic consequence
(3) (-F = =G) = (G —F) of S in Hilbert Calculus if one of these conditions holds:
(4) F'— (-F = G) Axiom:  F'is an instance of an axiom
(5) "F—=F)—F Hypothesis: F € S

An instance of an axiom is the result of substituting the place-holders Modus Ponens: S+ G — F and S G, ie both G — F
of the axiom by formulas. and G are syntactic consequences of S.

Easy to see: all instances are valid formulas.

Example: Instance of (4) with A — B and —C for F' and G-
(WA — B) — (#(-A— B) — ()

Modus Ponens Example of derivation
. FA—=((B— A)— A) Instance of Axiom (1)
2. F(A—=((B—A) — A)
—
Derivation rule of the calculus, allowing to generate new syntactic (A= (B = A)) — (A — A)) Instance of Axiom (2)

consequences from old ones:

3. FA—-(B—A4)—-(A—A) Modus Ponens with 1. & 2.

S+ G- F 4. FA— (B— A Instance of Axiom (1)
S +F G FA— A Modus Ponens with 3. & 4.
S F F

Remark: The same derivation works for arbitrary formulas F, G
instead of A, B, and so we can derive - F' — F for any formula F'.

We can therefore see a derivation as a way of producing new axioms
(the axiom F' — F in this case).



Correctness and completeness Correctness proof of the Hilbert calculus

Correctness: If F'is a syntactic consequence from .S, then F'is a

consequence of S. Correctness Theorem: Let F' be an arbitrary formula, and let S be a

set of formulas such that S+ F. Then S = F.

Completeness: If I is a consequence of S, then I is a syntactic Proof: Easy induction on the length of the derivation of S F'.
consequence from S.

Completeness proof: preliminaries Completeness - Proof sketch

(1) S | Fiff SU{=F} is unsatisfiable. (Trivial)
Wie wish to prove: if S = F, then S = F. How could this work?

e Induction on the derivation?
~ there is no derivation!

e Induction on the structure of the formula £7
For the induction basis we would have to prove for an atomic
formula A:
if = Athen S+ A.
But how do we construct a derivation of S+ A if all we know is

S = A?



Completeness - Proof sketch

(1) S | Fiff SU{=F} is unsatisfiable. (Trivial)

(2) Definition: S is inconsistent if there is a formula F' such that
SEF and S+ —F.

Completeness - Proof sketch

(1) S | Fiff SU{=F} is unsatisfiable. (Trivial)

(2) Definition: S is inconsistent if there is a formula F' such that
SFEFand S+ —F.

(3) Sk Fiff SU{—F} is inconsistent. (To be proved!)

(4) Unsatisfiable sets are inconsistent. (To be proved!)

Completeness - Proof sketch

(1) S | Fiff SU{=F} is unsatisfiable. (Trivial)

(2) Definition: S is inconsistent if there is a formula F' such that
St Fand Sk —F.

(3) Sk Fiff SU{—F} is inconsistent. (To be proved!)

Completeness - Proof sketch

(1) S | Fiff SU{=F} is unsatisfiable. (Trivial)

(2) Definition: S is inconsistent if there is a formula F' such that
St Fand S+ —F.

(3) Sk Fiff SU{—F} is inconsistent. (To be proved!)

(4) Unsatisfiable sets are inconsistent. (To be proved!)

Proof sketch: Assume S |= F.

Then S U {—F} is unsatisfiable by (1).
Then S U {—F} is inconsistent by (4).
Then S+ F by (3).



Completeness - Proof sketch

(1) S | Fiff SU{=F} is unsatisfiable. (Trivial)

(2) Definition: S is inconsistent if there is a formula F' such that
SEF and S+ —F.

(3) Sk Fiff SU{—F} is inconsistent. (To be proved!)

(4) Unsatisfiable sets are inconsistent. (To be proved!)

Proof sketch: Assume S |= F.

Then S U {—F} is unsatisfiable by (1).
Then S U {—F} is inconsistent by (4).
Then S+ F by (3).

We prove (3) und (4).

Examples of inconsistent sets

{A,—!A}
{~(A—(B—A4))}
{-B,-B — B}
{C,~(=C — D)}

(In)consistency

Definition: A set S of formulas is inconsistent if there is a formula I
such that S+ F and S F —F, otherwise it is consistent.

Observe: inconsistency is a purely syntactic notion!!

Important tool: the Deduction Theorem

Theorem: SU{F}FGiff Sk F — G.

Proof: Assume S+ F — G. Then SU{F} F F — G.
Using SU{F} I F and Modus Ponens we get SU {F} - G.

Assume S U {F'} - G. Proof by induction on the derivation (length):

Axiom/Hypothesis: G is instance of an axiom or G € S U {F'}.
If I' = (G use example of derivation to prove S+ F — F.
Otherwise S I G and by Axiom (1) S+ G — (F — G).

By Modus Ponens we get S+ F' — G.

Modus Ponens: Then SU{F} I G is derived by Modus Ponens
from some SU{F}+H — Gand SU{F} F H.
By ind. hyp we have S-F — (H — G)and SF F — H.
From Axiom (2) we get
SH(F—(H—G))— ((F—H)— (F—GQG)).
Modus Ponens yields S+ F — G.



Consequences of the Deduction Theorem

Lemmal: SU{-F}F Fiff Sk F

Proof: Assume S U {=F'} - F holds.

By the Deduction Theorem S+ —F — F.
Using Axiom (5) we get S+ (=F — F) — F.
By Modus Ponens we get S F F'.

The other direction is trivial.

Completeness - Proof of (4)

Recall assertion (4):
Unsatisfiable sets are inconsistent.
We prove the equivalent assertion:
Consistent sets are satisfiable.

How do we prove an assertion like this?

Completeness - Proof of (3)

Assertion (3): Sk Fiff SU{—F} is inconsistent.

Proof: Assume S = F'.
Then SU{~F} F F.
Since SU {—F} = —F, the set SU {—F} is inconsistent.

Assume S U {—F'} is inconsistent.

Then there is a formula G s.t. SU{=F} F G and SU{-F} F =G.
By Axiom (4) we get SU{-F} G — (-G — F).

Two applications of Modus Ponens yield S U {—F'} - F.

Lemma | yields S - F.

Completeness - Proof of (4)

Recall assertion (4):
Unsatisfiable sets are inconsistent.
We prove the equivalent assertion:
Consistent sets are satisfiable.

How do we prove an assertion like this?

Answer: Construct a satisfying truth assignment A as follows:
If AeS thenset A(A):=1.
If —Ae€S thenset A(A):=0.



Completeness - Proof of (4)

Recall assertion (4):
Unsatisfiable sets are inconsistent.
We prove the equivalent assertion:

Consistent sets are satisfiable. Perhaps we can avoid the problem?

How do we prove an assertion like this’ Definition: A set S of formulas is maximally consistent if it is

Answer: Construct a satisfying truth assignment A as follows: consistent and for every formula I either /"€ 5 or ~F € 5.

If AeS thenset A(A):=1
If —Ae€S thenset A(A):=0.

Problem: What do we do if neither A € S nor =4 € S?

Completeness - Proof sketch for (4)

Dt A lern? (4) Consistent sets are satisfiable.
erhaps we can avoid the problem?

Definition: A set S of formulas is maximally consistent if it is
consistent and for every formula F' either F € S or -F € S.

We extend S to a maximally consistent set S O S.



Completeness - Proof sketch for (4)

(4) Consistent sets are satisfiable.

(4.1) Every consistent set can be extended to a maximally consistent
set.

Proof of (4.1) - Preliminaries

Lemma Il: Let S be a consistent set and let F' be an arbitrary
formula. Then: SU {F} or SU{~F} (or both) are consistent.

Proof: Assume S is consistent but both S U {F} and S U {—F} are
inconsistent.

Since S U {—F} is inconsistent we have S = F' by Assertion (3).
Since S U {F'} is inconsistent there is a formula G s.t. SU{F} G
and SU{F} F =G, and the Deduction Theorem yields S+ F' — G
and S F — G,

Modus Ponens yields S+ G and S F =G.

This contradicts the assumption that S is consistent.

Completeness - Proof sketch for (4)

(4) Consistent sets are satisfiable.

(4.1) Every consistent set can be extended to a maximally consistent
set.

(4.2) Let S be maximally consistent and let A be the assignment
given by A(A)=1if Ae Sand A(A)=0if A¢S.
Then A satisfies S.

Proof of (4.1)

Assertion (4.1): Every consistent set can be extended to a maximally
consistent set.

Proof: Let Fy, F', F5 ... be an enumeration of all formulas. Let

So =S and

G S; U{F;} if S;U{F;} consistent
e S; U{=FE;} if S;U{—=F;} consistent

(this is well defined by Lemma I1)

By definition, every S; is consistent.

Let S = J;2, Si. If S were inconsistent, some finite subset would also
be inconsistent. So S is consistent.

By definition, S is maximally consistent.



Proof of (4.2) - Preliminaries

Lemma Ill: Let S be a maximally consistent set:

(1) For every formula F: F € Siff S+ F.

(2) For every formula F': =F € Siff F ¢ S.

(3) For every two formulas F,G: F - Ge Siff F ¢ SorGeS.

Proof: We prove only: if ' ¢ S then ' — G € S (others similar).
From =F € S we get:

(=G — —F) — (F — Q) Axiom (3)
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A Hilbert Calculus for predicate logic

We extend formulas by allowing universal quantification.
Three new axiom schemes:
(6) (Vx F) — Flx/t] for every term ¢,

(7) Vz (F — Q) — (Vx F — Vz Q).
(8) F — Vx F if x does not occur free in F.

Theorem: The extension of the Hilbert Calculus is correct and
complete for predicate logic.

-F because = F € S
-F — (-G — =F) Axiom (1)
-G — = F Modus Ponens to 1. & 2.

F—-d Modus Ponens to 3. & 4.

Proof of (4.2)

Assertion (4.2): Let S by maximally consistent, and let .4 be the
assignment given by: A(A) = 1iff A € S. Then A satisfies S.

Proof: Let F be a formula. We prove: A(F) =1iff F € S.

By induction on the structure of F' (and using Lemma Ill):

Atomic formulas: F' = A. Easy.

Negation: F' = —G. We have: A(F) =1 iff A(G) =0 iff
GgSiff-GeSiff FeS.

Implication: F' = F; — Fy. We have: A(F) =1 iff
A(Fy — Fy) = 1iff (A(F1) =0 or A(Fy) = 1) iff
(FLgSorFeS)iff i - F,eSiff Fes.



