G.S. Boolos, J.P. Burgess, R.C Jeffrey:

Computability and Logic. Cambridge University Press 2002.

A signature is a (finite or infinite) set of predicate and function symbols. We fix a signature S. "Formula" means now "formula over the signature $S^{\prime \prime \prime}$.
A theory is a set of formulas T closed under consequence, i.e., if $F_{1}, \ldots, F_{n} \in T$ and $\left\{F_{1}, \ldots, F_{n}\right\} \models G$ then $G \in T$.

Fact: Let \mathcal{A} be a structure suitable for S. The set F of formulas such that $\mathcal{A}(F)=1$ is a theory.
We call them model-based theories.
Fact: Let \mathcal{F} be a set of closed formulas. The set F of formulas such that $\mathcal{F} \models F$ is a theory.

The signature of arithmetic

- a constant 0 ,
- a unary function symbol s,
- two binary function symbols + and \cdot, and
- a binary predicate symbol $<$.
(slight change over previous definitions)
Arith is the theory containing the set of closed formulas over S_{A} that are true in the canonical structure.
Arith contains "all the theorems of calculus".

A set \mathcal{F} of formulas is decidable if there is an algorithm that decides for every formula F whether $F \in \mathcal{F}$ holds.
Let T be a theory.
T is decidable if it is decidable as a set of formulas.
T is consistent if for every closed formula F either $F \notin T$ or $\neg F \notin T$.
T is complete if for every closed formula F either $F \in T$ or $\neg F \in T$.
T is (finitely) axiomatizable if there is a (finite) decidable set $\mathcal{X} \subseteq T$
of axioms such that every closed formula of T is a consequence of \mathcal{X}.

Conventions and notation

Basic facts

In the following: set of axioms $=$ decidable set of formulas over S_{A}
$T_{\mathcal{X}}$ denotes the theory of all closed formulas that are consequences of a set \mathcal{X} of axioms.

Fact: Every theory contains all valid formulas (because they are consequences of the empty set).

Fact: Model-based theories (like Arith) are consistent and complete.
Fact: T is consistent iff there is a formula F such that $F \notin T$.
Proof: If T is consistent then $F \notin T$ for some F by definition.
If T is inconsistent, then there exists a formula F such that $F \in T$ and $\neg F \in T$. Let G be an arbitrary closed formula. Since $F, \neg F \models G$ and T is closed under consequence, we have $G \in T$.

Basic facts

Lemma: If T is axiomatizable and complete, then T is decidable.
Proof: If T inconsistent then T contains all closed formulas, and the algorithm that answers " $F \in T$ " for every input F decides T.
If T consistent, let consider the following algorithm:

- Input: F

Enumerate all syntactic consequences of the axioms of T, and for each new syntactic consequence G do:

- If $G=F$ halt with " $F \in T$ "
- If $G=\neg F$ halt with " $F \notin T$ "

Observe: the syntactic consequences of the axioms can be enumerated.
We prove this algorithm is correct:

- If algorithm answers " $F \in T$ ", then $F \in T$.

If algorithm answers " $F \in T$ ", then F is syntactic consequence, and so consequence of the axioms. Since T is a theory, $F \in T$.

- If algorithm answers " $F \notin T$ ", then $F \notin T$.

If algorithm answers " $F \in T$ ", then $\neg F$ is consequence of the axioms and so $\neg F \in T$. By consistency, $F \notin T$.

- The algorithm terminates.

Since T is complete, either $F \in T$ or $\neg F \in T$.
Assume w.l.og. $F \in T$.
Since T is axiomatizable, F is a consequence of the axioms.
So F is a syntactic consequence of the axioms.
So eventually $G:=F$ and the algorithm terminates.

Theorem: Arith is undecidable.
Proof: By reduction from the halting problem, similar to undecidability proof for validity of predicate logic.

Theorem: Arith is not axiomatizable.
Proof: Since Arith is undecidable, consistent, and complete, it is not axiomatizable (see Lemma).

Theorem: Let \mathcal{X} be any set of axioms such that $\mathcal{X} \subseteq$ Arith. Then the theory $T_{\mathcal{X}}$ is incomplete.
Proof: Since Arith is not axiomatizable, there is a formula $F \in$ Arith such that $\mathcal{X} \notin F$ and so $F \notin T_{\mathcal{X}}$.
Assume now $\neg F \in T_{\mathcal{X}}$. Then $\mathcal{X} \models \neg F$ and since $\mathcal{X} \subseteq$ Arith we get $\neg F \in$ Arith, contradicting $F \in$ Arith.
So $F \notin T_{\mathcal{X}}$ and $\neg F \notin T_{\mathcal{X}}$, which proves that $T_{\mathcal{X}}$ is incomplete.

Gödel's first incompleteness theorem

Observe: $F \in$ Arith, i.e., F is true in the canonical structure, but its truth cannot be proved using any set \mathcal{X} of axioms (unless some axiom is itself not true!)

In other words: for every set of true axioms, there are true formulas that cannot be deduced from the axioms

But we have no idea how such formulas look like ...
Goal: given a set of axioms $\mathcal{X} \subseteq$ Arith, construct a formula
$F \in$ Arith such that $F \notin T_{\mathcal{X}}$

Minimal arithmetic Q is the axiom-based theory over S_{A} having the following axioms:

Minimal arithmetic

(Q1)	$\forall x$	$\neg(0=s(x))$
(Q2)	$\forall x \forall y$	$s(x)=s(y) \rightarrow x=y$
(Q3)	$\forall x$	$x+0=x$
(Q4)	$\forall x \forall y$	$x+s(y)=s(x+y)$
(Q5)	$\forall x$	$x \cdot 0=0$
(Q6)	$\forall x \forall y$	$x \cdot s(y)=(x \cdot y)+x$
(Q7)	$\forall x$	$\neg(x<0)$
(Q8)	$\forall x \forall y$	$x<s(y) \leftrightarrow(x<y \vee x=y)$
(Q9)	$\forall x \forall y$	$x<y \vee x=y \vee y<x$

Peano arithmetic

Some theorems of Q (and P)

Peano arithmetic P is the axiom-based theory over S_{A} having Q1-Q9 as axioms plus all closed formulas of the form
(I) $\forall \mathbf{y} \quad F(0, \mathbf{y}) \wedge \forall x(F(x, \mathbf{y}) \rightarrow F(s(x), \mathbf{y}))$

$$
\forall x F(x, \mathbf{y})
$$

where $\mathbf{y}=\left(y_{1}, \ldots y_{n}\right)$.
Observe: I is an axiom scheme; the set of axioms of P is infinite but decidable.
$\neg\left(0=s^{n}(0)\right)$ for every $n \geq 1$
$\neg\left(s^{n}(0)=s^{m}(0)\right)$ for every $n, m \geq 1, n \neq m$
$\forall x \quad x<1 \leftrightarrow x=0$
$\forall x \quad x<s^{n+1}(0) \leftrightarrow\left(x=0 \vee x=s(0) \vee \ldots \vee x=s^{n}(0)\right)$
$s^{n}(0)+s^{m}(0)=s^{l}(0)$ for every $n, m, l \geq 1$ such that $n+m=l$
$s^{n}(0) \cdot s^{m}(0)=s^{l}(0)$ for every $n, m, l \geq 1$ such that $n \cdot m=l$

Gödel encodings

Gödel encodings

Example (Wikipedia): the formula

$$
x=y \rightarrow y=x
$$

written in ASCII as

$$
x=y=>y=x
$$

corresponds to the sequence
120-061-121-032-061-062-032-121-061-120
of ASCII codes, and so it is assigned the number

$$
120061121032061062032121061120
$$

Gödel's Gödel encoding

What are Gödel encodings good for?

Let p_{n} denote the n-th prime number.
Gödel's encoding assigns to each symbol λ a number $g(\lambda)$, and to a sequence $\lambda_{1} \cdots \lambda_{n}$ of symbols the number

$$
2^{g\left(\lambda_{1}\right)} \cdot 3^{g\left(\lambda_{2}\right)} \cdot 5^{g\left(\lambda_{3}\right)} \cdot \ldots \cdot p_{n}^{g\left(\lambda_{n}\right)}
$$

A formula $F(x)$ over S_{A} with a free variable x defines a property of numbers: the property satisfied exactly by the numbers n such that $F\left(s^{n}(0)\right)$ is true in the canonical structure.
We can easily construct formulas Even (x), $\operatorname{Prime}(x)$, Power_of_two (x).

Via the encoding formulas "are" numbers, and so a formula also defines a property of formulas!

```
    numbers }->\mathrm{ formulas
formula F(x) }->\mathrm{ set of numbers }->\mathrm{ set of formulas
```


Going further

We can (less easily) construct formulas like

- First_symbol_is_ $\forall(x)$
- At_least_ten_symbols(x)
- Closed (x)
- ...
that are true i.t.c.s. for $x:=s^{n}(0)$ iff the number n encodes a formula and the formula satisfies the corresponding property.

We can construct (even less easily) a formula

- In_Q(x)
that is true i.t.c.s. for $x=s^{n}(0)$ iff the number n encodes a closed formula F such that $F \in \mathrm{Q}$.

The reason is

$$
F \in \mathrm{Q} \text { iff } \mathrm{Q} 1, \ldots, \mathrm{Q} 9 \models F \text { iff } \mathrm{Q} 1, \ldots, \mathrm{Q} 9 \vdash F
$$

and the derivation procedure amounts to symbol manipulation.
Same for any other set \mathcal{X} of axioms.

Reaching the goal

Recall our goal: Given a set of axioms $\mathcal{X} \subseteq$ Arith, construct a formula $F \in$ Arith such that $F \notin T_{\mathcal{X}}$

Let \underline{F} denote the term $s^{n}(0)$ where n is the Gödel encoding of the formula F.

Intuition: $\underline{\mathrm{F}}$ is a "name" we give to F
Lemma (Diagonal Lemma): Let \mathcal{X} be any set of axioms containing Q1, .. Q9. For every formula $B(y)$ there is a closed formula G such that $G \leftrightarrow B(\underline{\mathrm{G}}) \in T_{\mathcal{X}}$.
We call G the Gödel formula of $B(x)$.
We have: G true i.t.c.s if and only if G has property B
Intuition: G asserts that G has property B (true or false i.t.c.s.!)

Theorem: Let \mathcal{X} be any set of axioms containing $\mathrm{Q} 1, \ldots \mathrm{Q} 9$.
Let $G_{\mathcal{X}}$ be the Gödel formula of $\neg I n_{-} T_{\mathcal{X}}(x)$. Then $G_{\mathcal{X}} \in \operatorname{Arith} \backslash T_{\mathcal{X}}$.
Proof idea: By definition, $G_{\mathcal{X}}$ is true i.t.c.s iff $G_{\mathcal{X}} \notin T_{\mathcal{X}}$.
If $G_{\mathcal{X}}$ is false i.t.c.s. then $G_{\mathcal{X}} \in T_{\mathcal{X}}$.
Since $\mathcal{X} \subseteq$ Arith, we have $G_{\mathcal{X}} \in$ Arith
But then, by definition of Arith, $G_{\mathcal{X}}$ is true i.t.c.s.
Contradiction!
So $G_{\mathcal{X}}$ is true i.t.c.s., i.e., $G_{\mathcal{X}} \in$ Arith.
But then $G_{\mathcal{X}} \notin T_{\mathcal{X}}$, and so $G_{\mathcal{X}} \in \operatorname{Arith} \backslash T_{\mathcal{X}}$. Done!

Gödel's second incompleteness theorem

For any set of axioms \mathcal{X} containing Q1 we have $0=s(0) \notin T_{\mathcal{X}}$, and so $T_{\mathcal{X}}$ is consistent iff $0=s(0) \notin T_{\mathcal{X}}$.

The consistency formula for \mathcal{X} is the formula $\neg I_{-} T_{\mathcal{X}}(\underline{0=s}(0))$
Intuition: The consistency formula for \mathcal{X} states that $T_{\mathcal{X}}$ is consistent.
Theorem (Gödel's second incompleteness theorem): Let \mathcal{X} be any set of axioms containing P . Then the consistency formula for \mathcal{X} does not belong to $T_{\mathcal{X}}$.
Intuition: the consistency of a theory cannot be derived from the axioms of the theory.

Proving the Diagonal Lemma: Diagonalization

Let $F(x)$ be a formula with a free variable x. The diagonalization of F is the closed formula

$$
\text { DiagF }:=\exists x x=\underline{\mathrm{F}} \wedge F(x)
$$

Intuition: DiagF asserts that F has property F
Observe: DiagF and $F(\underline{F})$ are logically equivalent, but they have different Gödel numbers.

The representation theorem

Proof of the Diagonal Lemma I

Theorem : There is a formula $\operatorname{Diag}(x, y)$ such that for every formula F

$$
\forall y \quad \operatorname{Diag}(\underline{\mathrm{~F}}, y) \leftrightarrow y=\underline{\mathrm{DiagF}}
$$

can be derived in Q (and so in P).
Proof: Omitted.
Observe: the theorem does not hold for every set of axioms. For instance, it does not hold for the system Q1-Q4, since in that system we cannot infer anything about the product function.

Lemma: Let \mathcal{X} be any set of axioms containing Q1, ... Q9.
For every formula $B(y)$ there is a closed formula G such that $G \leftrightarrow B(\underline{\mathrm{G}}) \in T_{\mathcal{X}}$.
Proof: Let $A(x):=\exists y(\operatorname{Diag}(x, y) \wedge B(y))$ and let $G:=\operatorname{Diag} A$.
Intuition: G asserts that the diagonalization of A (the formula asserting that A satisfies A) satisfies B.

Explicitely:

$$
G:=\exists x(x=\underline{\mathrm{A}} \wedge A(x)):=\exists x(x=\underline{\mathrm{A}} \wedge \exists y(\operatorname{Diag}(x, y) \wedge B(y)))
$$

Proof of the Diagonal Lemma II

The formula $G \leftrightarrow \exists y(\operatorname{Diag}(\underline{\mathrm{~A}}, y) \wedge B(y))$ is valid, and so, since valid formulas belong to every theory, we have

$$
G \leftrightarrow \exists y(\operatorname{Diag}(\underline{\mathrm{~A}}, y) \wedge B(y)) \in T_{\mathcal{X}}
$$

Since $G:=\operatorname{Diag} A$, we have by the representation theorem:

$$
\forall y(\operatorname{Diag}(\underline{\mathbf{A}}, y) \leftrightarrow y=\underline{\mathbf{G}}) \in T_{\mathcal{X}}
$$

And so, since $T_{\mathcal{X}}$ is closed under consequence, we get

$$
G \leftrightarrow \exists y(y=\underline{\mathbf{G}} \wedge B(y)) \in T_{\mathcal{X}}
$$

and for the same reason

$$
G \leftrightarrow B(\underline{\mathbf{G}}) \in T_{\mathcal{X}}
$$

