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Theories

A signature is a (finite or infinite) set of predicate and function

symbols. We fix a signature S. “Formula” means now “formula over

the signature S”.

A theory is a set of formulas T closed under consequence, i.e., if

F1, . . . , Fn ∈ T and {F1, . . . , Fn} |= G then G ∈ T .

Fact: Let A be a structure suitable for S. The set F of formulas such

that A(F ) = 1 is a theory.

We call them model-based theories.

Fact: Let F be a set of closed formulas. The set F of formulas such

that F |= F is a theory.
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The signature of arithmetic

The signature SA of arithmetic contains:

• a constant 0,

• a unary function symbol s,

• two binary function symbols + and ·, and

• a binary predicate symbol <.

(slight change over previous definitions)

Arith is the theory containing the set of closed formulas over SA

that are true in the canonical structure.

Arith contains “all the theorems of calculus”.

3

Decidability, consistency, completeness, . . .

A set F of formulas is decidable if there is an algorithm that decides

for every formula F whether F ∈ F holds.

Let T be a theory.

T is decidable if it is decidable as a set of formulas.

T is consistent if for every closed formula F either F /∈ T or ¬F /∈ T .

T is complete if for every closed formula F either F ∈ T or ¬F ∈ T .

T is (finitely) axiomatizable if there is a (finite) decidable set X ⊆ T

of axioms such that every closed formula of T is a consequence of X .
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Conventions and notation

In the following: set of axioms = decidable set of formulas over SA

TX denotes the theory of all closed formulas that are consequences of

a set X of axioms.
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Basic facts

Fact: Every theory contains all valid formulas (because they are

consequences of the empty set).

Fact: Model-based theories (like Arith) are consistent and complete.

Fact: T is consistent iff there is a formula F such that F /∈ T .

Proof: If T is consistent then F /∈ T for some F by definition.

If T is inconsistent, then there exists a formula F such that F ∈ T

and ¬F ∈ T . Let G be an arbitrary closed formula. Since F,¬F |= G

and T is closed under consequence, we have G ∈ T .
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Basic facts

Lemma: If T is axiomatizable and complete, then T is decidable.

Proof: If T inconsistent then T contains all closed formulas, and the

algorithm that answers “F ∈ T” for every input F decides T .

If T consistent, let consider the following algorithm:

• Input: F

Enumerate all syntactic consequences of the axioms of T , and

for each new syntactic consequence G do:

− If G = F halt with “F ∈ T”

− If G = ¬F halt with “F /∈ T”

Observe: the syntactic consequences of the axioms can be

enumerated.

We prove this algorithm is correct:
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• If algorithm answers “F ∈ T”, then F ∈ T .

If algorithm answers “F ∈ T”, then F is syntactic consequence,

and so consequence of the axioms. Since T is a theory, F ∈ T .

• If algorithm answers “F /∈ T”, then F /∈ T .

If algorithm answers “F ∈ T”, then ¬F is consequence of the

axioms and so ¬F ∈ T . By consistency, F /∈ T .

• The algorithm terminates.

Since T is complete, either F ∈ T or ¬F ∈ T .

Assume w.l.og. F ∈ T .

Since T is axiomatizable, F is a consequence of the axioms.

So F is a syntactic consequence of the axioms.

So eventually G := F and the algorithm terminates.
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Basic facts

Theorem: Arith is undecidable.

Proof: By reduction from the halting problem, similar to

undecidability proof for validity of predicate logic.

Theorem: Arith is not axiomatizable.

Proof: Since Arith is undecidable, consistent, and complete, it is not

axiomatizable (see Lemma).
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Gödel’s first incompleteness theorem

Theorem: Let X be any set of axioms such that X ⊆ Arith.

Then the theory TX is incomplete.

Proof: Since Arith is not axiomatizable, there is a formula

F ∈ Arith such that X 6|= F and so F /∈ TX .

Assume now ¬F ∈ TX . Then X |= ¬F and since X ⊆ Arith we get

¬F ∈ Arith, contradicting F ∈ Arith.

So F /∈ TX and ¬F /∈ TX , which proves that TX is incomplete.
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Gödel’s first incompleteness theorem

Observe: F ∈ Arith, i.e., F is true in the canonical structure, but its

truth cannot be proved using any set X of axioms (unless some

axiom is itself not true!)

In other words: for every set of true axioms, there are true formulas

that cannot be deduced from the axioms

But we have no idea how such formulas look like . . .

Goal: given a set of axioms X ⊆ Arith, construct a formula

F ∈ Arith such that F /∈ TX
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Minimal arithmetic

Minimal arithmetic Q is the axiom-based theory over SA having the

following axioms:

(Q1) ∀x ¬(0 = s(x))

(Q2) ∀x∀y s(x) = s(y) → x = y

(Q3) ∀x x + 0 = x

(Q4) ∀x∀y x + s(y) = s(x + y)

(Q5) ∀x x · 0 = 0

(Q6) ∀x∀y x · s(y) = (x · y) + x

(Q7) ∀x ¬(x < 0)

(Q8) ∀x∀y x < s(y) ↔ (x < y ∨ x = y)

(Q9) ∀x∀y x < y ∨ x = y ∨ y < x

12



Peano arithmetic

Peano arithmetic P is the axiom-based theory over SA having Q1-Q9

as axioms plus all closed formulas of the form

(I) ∀y F (0,y) ∧ ∀x ( F (x,y) → F (s(x),y) )

→
∀x F (x,y)

where y = (y1, . . . yn).

Observe: I is an axiom scheme; the set of axioms of P is infinite but

decidable.
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Some theorems of Q (and P)

¬(0 = sn(0)) for every n ≥ 1

¬(sn(0) = sm(0)) for every n,m ≥ 1, n 6= m

∀x x < 1 ↔ x = 0

∀x x < sn+1(0) ↔ (x = 0 ∨ x = s(0) ∨ . . . ∨ x = sn(0))

sn(0) + sm(0) = sl(0) for every n,m, l ≥ 1 such that n + m = l

sn(0) · sm(0) = sl(0) for every n,m, l ≥ 1 such that n ·m = l
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Gödel encodings

A Gödel encoding is an injective function that maps every formula

over SA to a natural number called its Gödel number.

Simple Gödel encoding: assign to each symbol of the formula its

ASCII code, assign to a formula the concatenation of the ASCII codes

of its symbols.
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Gödel encodings

Example (Wikipedia): the formula

x = y → y = x

written in ASCII as

x=y => y=x

corresponds to the sequence

120-061-121-032-061-062-032-121-061-120

of ASCII codes, and so it is assigned the number

120061121032061062032121061120
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Gödel’s Gödel encoding

Let pn denote the n-th prime number.

Gödel’s encoding assigns to each symbol λ a number g(λ), and to a

sequence λ1 · · ·λn of symbols the number

2g(λ1) · 3g(λ2) · 5g(λ3) · . . . · pg(λn)
n
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What are Gödel encodings good for?

A formula F (x) over SA with a free variable x defines a property of

numbers: the property satisfied exactly by the numbers n such that

F (sn(0)) is true in the canonical structure.

We can easily construct formulas Even(x), Prime(x),

Power of two(x) . . .

Via the encoding formulas “are” numbers, and so a formula also

defines a property of formulas!

numbers → formulas

formula F (x) → set of numbers → set of formulas
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Going further . . .

We can (less easily) construct formulas like

• First symbol is ∀(x)

• At least ten symbols(x)

• Closed(x)

• . . .

that are true i.t.c.s. for x := sn(0) iff the number n encodes a

formula and the formula satisfies the corresponding property.
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And even further . . .

We can construct (even less easily) a formula

• In Q(x)

that is true i.t.c.s. for x = sn(0) iff the number n encodes a closed

formula F such that F ∈ Q.

The reason is

F ∈ Q iff Q1, . . . , Q9 |= F iff Q1, . . . , Q9 ⊢ F

and the derivation procedure amounts to symbol manipulation.

Same for any other set X of axioms.

20



Diagonal Lemma

Recall our goal: Given a set of axioms X ⊆ Arith, construct a

formula F ∈ Arith such that F /∈ TX

Let F denote the term sn(0) where n is the Gödel encoding of the

formula F .

Intuition: F is a “name” we give to F

Lemma (Diagonal Lemma): Let X be any set of axioms containing

Q1, . . . Q9. For every formula B(y) there is a closed formula G such

that G ↔ B(G) ∈ TX .

We call G the Gödel formula of B(x).

We have: G true i.t.c.s if and only if G has property B

Intuition: G asserts that G has property B (true or false i.t.c.s.!)

21

Reaching the goal

Theorem: Let X be any set of axioms containing Q1, . . . Q9.

Let GX be the Gödel formula of ¬In TX (x). Then GX ∈ Arith \TX .

Proof idea: By definition, GX is true i.t.c.s iff GX /∈ TX .

If GX is false i.t.c.s. then GX ∈ TX .

Since X ⊆ Arith, we have GX ∈ Arith.

But then, by definition of Arith, GX is true i.t.c.s.

Contradiction!

So GX is true i.t.c.s., i.e., GX ∈ Arith.

But then GX /∈ TX , and so GX ∈ Arith \ TX . Done!
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Gödel’s second incompleteness theorem

For any set of axioms X containing Q1 we have 0 = s(0) /∈ TX , and

so TX is consistent iff 0 = s(0) /∈ TX .

The consistency formula for X is the formula ¬In TX (0=s(0))

Intuition: The consistency formula for X states that TX is consistent.

Theorem (Gödel’s second incompleteness theorem): Let X be any set

of axioms containing P. Then the consistency formula for X does not

belong to TX .

Intuition: the consistency of a theory cannot be derived from the

axioms of the theory.
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Proving the Diagonal Lemma: Diagonalization

Let F (x) be a formula with a free variable x.

The diagonalization of F is the closed formula

DiagF := ∃x x = F ∧ F (x)

Intuition: DiagF asserts that F has property F

Observe: DiagF and F (F) are logically equivalent, but they have

different Gödel numbers.

24



The representation theorem

Theorem : There is a formula Diag(x, y) such that for every formula

F

∀y Diag(F, y) ↔ y = DiagF

can be derived in Q (and so in P).

Proof: Omitted.

Observe: the theorem does not hold for every set of axioms. For

instance, it does not hold for the system Q1-Q4, since in that system

we cannot infer anything about the product function.
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Proof of the Diagonal Lemma I

Lemma: Let X be any set of axioms containing Q1, . . . Q9.

For every formula B(y) there is a closed formula G such that

G ↔ B(G) ∈ TX .

Proof: Let A(x) := ∃y (Diag(x, y) ∧B(y)) and let G := DiagA.

Intuition: G asserts that the diagonalization of A (the formula

asserting that A satisfies A) satisfies B.

Explicitely:

G:= ∃x (x = A ∧ A(x)) := ∃x (x = A ∧ ∃y (Diag(x, y) ∧B(y)))
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Proof of the Diagonal Lemma II

The formula G ↔ ∃y (Diag(A, y) ∧B(y)) is valid, and so, since valid

formulas belong to every theory, we have

G ↔ ∃y (Diag(A, y) ∧B(y)) ∈ TX

Since G := DiagA, we have by the representation theorem:

∀y (Diag(A, y) ↔ y = G) ∈ TX

And so, since TX is closed under consequence, we get

G ↔ ∃y (y = G ∧ B(y)) ∈ TX

and for the same reason

G ↔ B(G) ∈ TX
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