Source

Theories

G.S. Boolos, J.P. Burgess, R.C Jeffrey: Computability and Logic. Cambridge University Press 2002. A signature is a (finite or infinite) set of predicate and function symbols. We fix a signature S. "Formula" means now "formula over the signature S".

A theory is a set of formulas T closed under consequence, i.e., if $F_1, \ldots, F_n \in T$ and $\{F_1, \ldots, F_n\} \models G$ then $G \in T$.

Fact: Let \mathcal{A} be a structure suitable for S. The set F of formulas such that $\mathcal{A}(F) = 1$ is a theory. We call them model-based theories.

Fact: Let \mathcal{F} be a set of closed formulas. The set F of formulas such that $\mathcal{F} \models F$ is a theory.

The signature of arithmetic

The signature S_A of arithmetic contains:

- a constant 0,
- a unary function symbol *s*,
- two binary function symbols + and \cdot , and
- a binary predicate symbol <.

(slight change over previous definitions)

Arith is the theory containing the set of closed formulas over S_A that are true in the canonical structure.

Arith contains "all the theorems of calculus".

Decidability, consistency, completeness, ...

A set \mathcal{F} of formulas is decidable if there is an algorithm that decides for every formula F whether $F \in \mathcal{F}$ holds.

Let T be a theory.

T is decidable if it is decidable as a set of formulas.

T is consistent if for every closed formula F either $F \notin T$ or $\neg F \notin T$.

T is complete if for every closed formula F either $F \in T$ or $\neg F \in T$.

T is (finitely) axiomatizable if there is a (finite) decidable set $\mathcal{X} \subseteq T$ of axioms such that every closed formula of T is a consequence of \mathcal{X} .

Basic facts

In the following: set of axioms = decidable set of formulas over S_A

 $T_{\mathcal{X}}$ denotes the theory of all closed formulas that are consequences of a set \mathcal{X} of axioms.

Fact: Every theory contains all valid formulas (because they are consequences of the empty set).

Fact: Model-based theories (like Arith) are consistent and complete.

Fact: T is consistent iff there is a formula F such that $F \notin T$. Proof: If T is consistent then $F \notin T$ for some F by definition. If T is inconsistent, then there exists a formula F such that $F \in T$ and $\neg F \in T$. Let G be an arbitrary closed formula. Since $F, \neg F \models G$ and T is closed under consequence, we have $G \in T$.

Basic facts

Lemma: If T is axiomatizable and complete, then T is decidable.

Proof: If T inconsistent then T contains all closed formulas, and the algorithm that answers " $F \in T$ " for every input F decides T. If T consistent, let consider the following algorithm:

• Input: *F*

Enumerate all syntactic consequences of the axioms of T, and for each new syntactic consequence G do:

- If G = F halt with " $F \in T$ "
- If $G = \neg F$ halt with " $F \notin T$ "

Observe: the syntactic consequences of the axioms can be enumerated.

We prove this algorithm is correct:

- If algorithm answers "F ∈ T", then F ∈ T.
 If algorithm answers "F ∈ T", then F is syntactic consequence, and so consequence of the axioms. Since T is a theory, F ∈ T.
- If algorithm answers "F ∉ T", then F ∉ T.
 If algorithm answers "F ∈ T", then ¬F is consequence of the axioms and so ¬F ∈ T. By consistency, F ∉ T.
- The algorithm terminates.
 Since T is complete, either F ∈ T or ¬F ∈ T.
 Assume w.l.og. F ∈ T.
 Since T is axiomatizable, F is a consequence of the axioms.
 So F is a syntactic consequence of the axioms.
 So eventually G := F and the algorithm terminates.

Basic facts

Gödel's first incompleteness theorem

Theorem: Arith is undecidable.

Proof: By reduction from the halting problem, similar to undecidability proof for validity of predicate logic.

Theorem: Arith is not axiomatizable.

Proof: Since Arith is undecidable, consistent, and complete, it is not axiomatizable (see Lemma).

Theorem: Let \mathcal{X} be any set of axioms such that $\mathcal{X} \subseteq$ Arith. Then the theory $T_{\mathcal{X}}$ is incomplete.

Proof: Since Arith is not axiomatizable, there is a formula $F \in$ Arith such that $\mathcal{X} \not\models F$ and so $F \notin T_{\mathcal{X}}$. Assume now $\neg F \in T_{\mathcal{X}}$. Then $\mathcal{X} \models \neg F$ and since $\mathcal{X} \subseteq$ Arith we get $\neg F \in$ Arith, contradicting $F \in$ Arith. So $F \notin T_{\mathcal{X}}$ and $\neg F \notin T_{\mathcal{X}}$, which proves that $T_{\mathcal{X}}$ is incomplete.

Gödel's first incompleteness theorem

Minimal arithmetic

Observe: $F \in Arith$, i.e., F is true in the canonical structure, but its truth cannot be proved using any set \mathcal{X} of axioms (unless some axiom is itself not true!)

In other words: for every set of true axioms, there are true formulas that cannot be deduced from the axioms

But we have no idea how such formulas look like

Goal: given a set of axioms $\mathcal{X} \subseteq \text{Arith}$, construct a formula $F \in \text{Arith}$ such that $F \notin T_{\mathcal{X}}$

Minimal arithmetic Q is the axiom-based theory over S_A having the following axioms:

- $(Q1) \qquad \forall x \quad \neg(0 = s(x))$
- (Q2) $\forall x \forall y \quad s(x) = s(y) \rightarrow x = y$
- $(Q3) \qquad \forall x \quad x+0=x$
- (Q4) $\forall x \forall y \quad x + s(y) = s(x+y)$
- $(\mathsf{Q5}) \qquad \forall x \quad x \cdot 0 = 0$
- (Q6) $\forall x \forall y \quad x \cdot s(y) = (x \cdot y) + x$
- $(Q7) \qquad \forall x \quad \neg(x < 0)$
- (Q8) $\forall x \forall y \quad x < s(y) \leftrightarrow (x < y \lor x = y)$
- (Q9) $\forall x \forall y \quad x < y \lor x = y \lor y < x$

9

Peano arithmetic

Peano arithmetic P is the axiom-based theory over S_A having Q1-Q9 as axioms plus all closed formulas of the form

(I)
$$\forall \mathbf{y} \quad F(0, \mathbf{y}) \land \forall x \ (F(x, \mathbf{y}) \to F(s(x), \mathbf{y}))$$

 \rightarrow
 $\forall x \ F(x, \mathbf{y})$

where $\mathbf{y} = (y_1, \dots y_n)$.

Observe: I is an axiom scheme; the set of axioms of ${\sf P}$ is infinite but decidable.

$$\begin{array}{l} \neg(0 = s^n(0)) \quad \text{for every } n \geq 1 \\ \neg(s^n(0) = s^m(0)) \quad \text{for every } n, m \geq 1, \ n \neq m \\ \forall x \quad x < 1 \leftrightarrow x = 0 \\ \forall x \quad x < s^{n+1}(0) \leftrightarrow (x = 0 \lor x = s(0) \lor \ldots \lor x = s^n(0)) \\ s^n(0) + s^m(0) = s^l(0) \quad \text{for every } n, m, l \geq 1 \text{ such that } n + m = l \\ s^n(0) \cdot s^m(0) = s^l(0) \quad \text{for every } n, m, l \geq 1 \text{ such that } n \cdot m = l \end{array}$$

13	1
Gödel encodings	Gödel encodings
	Example (Wikipedia): the formula
	$x = y \rightarrow y = x$
A Godel encoding is an injective function that maps every formula over S_A to a natural number called its Gödel number.	written in ASCII as
Simple Gödel encoding: assign to each symbol of the formula its ASCII code, assign to a formula the concatenation of the ASCII codes of its symbols.	$x=y \Rightarrow y=x$
	corresponds to the sequence
	120-061-121-032-061-062-032-121-061-120
	of ASCII codes, and so it is assigned the number
	120061121032061062032121061120

What are Gödel encodings good for?

Let p_n denote the *n*-th prime number.

Gödel's encoding assigns to each symbol λ a number $g(\lambda)$, and to a sequence $\lambda_1 \cdots \lambda_n$ of symbols the number

 $2^{g(\lambda_1)} \cdot 3^{g(\lambda_2)} \cdot 5^{g(\lambda_3)} \cdot \ldots \cdot p_n^{g(\lambda_n)}$

A formula F(x) over S_A with a free variable x defines a property of numbers: the property satisfied exactly by the numbers n such that $F(s^n(0))$ is true in the canonical structure.

We can easily construct formulas Even(x), Prime(x), $Power_of_two(x) \dots$

Via the encoding formulas "are" numbers, and so a formula also defines a property of formulas!

numbers \rightarrow formulas formula $F(x) \rightarrow$ set of numbers \rightarrow set of formulas

17	16
Going further	And even further

We can (less easily) construct formulas like

- $First_symbol_is_\forall(x)$
- $At_least_ten_symbols(x)$
- Closed(x)
- ...

that are true i.t.c.s. for $x := s^n(0)$ iff the number n encodes a formula and the formula satisfies the corresponding property.

We can construct (even less easily) a formula

• $In_-Q(x)$

that is true i.t.c.s. for $x = s^n(0)$ iff the number n encodes a closed formula F such that $F \in \mathbb{Q}$.

The reason is

 $F \in \mathsf{Q}$ iff $\mathsf{Q1}, \ldots, \mathsf{Q9} \models F$ iff $\mathsf{Q1}, \ldots, \mathsf{Q9} \vdash F$

and the derivation procedure amounts to symbol manipulation. Same for any other set ${\cal X}$ of axioms.

Diagonal Lemma

Reaching the goal

Recall our goal: Given a set of axioms $\mathcal{X} \subseteq \text{Arith}$, construct a formula $F \in \text{Arith}$ such that $F \notin T_{\mathcal{X}}$

Let <u>F</u> denote the term $s^n(0)$ where *n* is the Gödel encoding of the formula *F*.

Intuition: $\underline{\mathbf{F}}$ is a "name" we give to F

Lemma (Diagonal Lemma): Let \mathcal{X} be any set of axioms containing Q1, ..., Q9. For every formula B(y) there is a closed formula G such that $G \leftrightarrow B(\underline{G}) \in T_{\mathcal{X}}$.

We call G the Gödel formula of B(x). We have: G true i.t.c.s if and only if G has property B

Intuition: G asserts that G has property B (true or false i.t.c.s.!)

Gödel's second incompleteness theorem

For any set of axioms \mathcal{X} containing Q1 we have $0 = s(0) \notin T_{\mathcal{X}}$, and so $T_{\mathcal{X}}$ is consistent iff $0 = s(0) \notin T_{\mathcal{X}}$.

The consistency formula for \mathcal{X} is the formula $\neg In_T_{\mathcal{X}}(\underline{0=s(0)})$

Intuition: The consistency formula for \mathcal{X} states that $T_{\mathcal{X}}$ is consistent.

Theorem (Gödel's second incompleteness theorem): Let \mathcal{X} be any set of axioms containing P. Then the consistency formula for \mathcal{X} does not belong to $T_{\mathcal{X}}$.

Intuition: the consistency of a theory cannot be derived from the axioms of the theory.

Theorem: Let \mathcal{X} be any set of axioms containing Q1, ... Q9. Let $G_{\mathcal{X}}$ be the Gödel formula of $\neg In_{-}T_{\mathcal{X}}(x)$. Then $G_{\mathcal{X}} \in \operatorname{Arith} \setminus T_{\mathcal{X}}$.

Proof idea: By definition, G_{χ} is true i.t.c.s iff $G_{\chi} \notin T_{\chi}$.

If $G_{\mathcal{X}}$ is false i.t.c.s. then $G_{\mathcal{X}} \in T_{\mathcal{X}}$. Since $\mathcal{X} \subseteq$ Arith, we have $G_{\mathcal{X}} \in$ Arith. But then, by definition of Arith, $G_{\mathcal{X}}$ is true i.t.c.s. Contradiction!

So $G_{\mathcal{X}}$ is true i.t.c.s., i.e., $G_{\mathcal{X}} \in \text{Arith}$. But then $G_{\mathcal{X}} \notin T_{\mathcal{X}}$, and so $G_{\mathcal{X}} \in \text{Arith} \setminus T_{\mathcal{X}}$. Done!

Proving the Diagonal Lemma: Diagonalization

Let F(x) be a formula with a free variable x. The diagonalization of F is the closed formula

 $DiagF := \exists x \ x = \underline{\mathbf{F}} \land F(x)$

Intuition: DiagF asserts that F has property F

Observe: DiagF and $F(\underline{F})$ are logically equivalent, but they have different Gödel numbers.

21

Theorem : There is a formula Diag(x, y) such that for every formula F

 $\forall y \ Diag(\underline{\mathbf{F}},y) \leftrightarrow y = \mathtt{Diag}\mathbf{F}$

can be derived in Q (and so in P).

Proof: Omitted.

Observe: the theorem does not hold for every set of axioms. For instance, it does not hold for the system Q1-Q4, since in that system we cannot infer anything about the product function.

Lemma: Let \mathcal{X} be any set of axioms containing Q1, ..., Q9. For every formula B(y) there is a closed formula G such that $G \leftrightarrow B(\underline{G}) \in T_{\mathcal{X}}$.

Proof: Let $A(x) := \exists y \ (Diag(x, y) \land B(y))$ and let G := DiagA.

Intuition: G asserts that the diagonalization of A (the formula asserting that A satisfies A) satisfies B.

Explicitely:

$$G := \exists x \ (x = \underline{\mathbf{A}} \land A(x)) := \exists x \ (x = \underline{\mathbf{A}} \land \exists y \ (Diag(x, y) \land B(y)))$$

25

Proof of the Diagonal Lemma II

The formula $G \leftrightarrow \exists y \ (Diag(\underline{A}, y) \land B(y))$ is valid, and so, since valid formulas belong to every theory, we have

 $G \leftrightarrow \exists y \ (Diag(\underline{\mathbf{A}}, y) \land B(y)) \in T_{\mathcal{X}}$

Since G := DiagA, we have by the representation theorem:

 $\forall y \ (Diag(\underline{\mathbf{A}}, y) \leftrightarrow y = \underline{\mathbf{G}}) \ \in \ T_{\mathcal{X}}$

And so, since $T_{\mathcal{X}}$ is closed under consequence, we get

 $G \leftrightarrow \exists y \ (y = \underline{\mathbf{G}} \land B(y)) \in T_{\mathcal{X}}$

and for the same reason

 $G \leftrightarrow B(\underline{G}) \in T_{\mathcal{X}}$