Equivalence

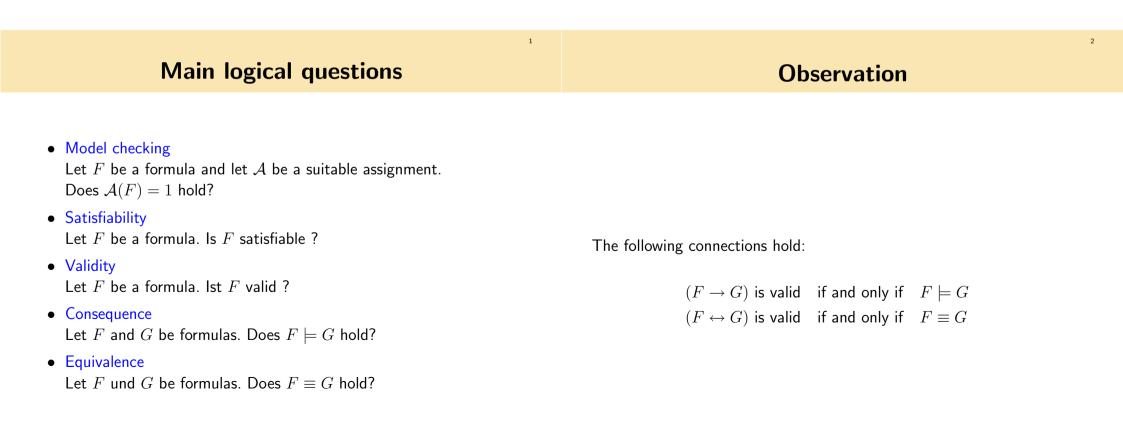
Which of the following equivalences hold?

Two formulas F and G are (semantically) equivalent if $\mathcal{A}(F) = \mathcal{A}(G)$ for every assignment \mathcal{A} that is suitable for both F and G.

We write $F \equiv G$ to denote that F and G are equivalent.

 $(A \land (A \lor B)) \equiv A$ $\neg (A \lor B) \equiv (\neg A \land \neg B)$ $(A \land (B \lor C)) \equiv ((A \land B) \lor C)$ $(A \land (B \lor C)) \equiv ((A \land B) \lor (A \land C))$

4



• Validity to Unsatisfiability (and back):

F valid iff $\neg F$ unsatisfiable

F unsatisfiable iff $\neg F$ valid

• Validity to Consequence:

F valid iff true $\models F$

• Consequence to Validity:

 $F \models G$ iff $F \rightarrow G$ valid

Validity to Equivalence:

F valid iff $F \equiv \mathbf{true}$

• Equivalence to Validity:

 $F \equiv G$ iff $F \leftrightarrow G$ valid

Properties of semantic equivalence	Substitution theorem

Semantic equivalence is an equivalence relation between formulas.

Semantic equivalence is closed under operators:

If $F_1 \equiv F_2$ and $G_1 \equiv G_2$ hold, then $(F_1 \wedge G_1) \equiv (F_2 \wedge G_2)$, $(F_1 \vee G_1) \equiv (F_2 \vee G_2)$ and $\neg F_1 \equiv \neg F_2$ hold too.

Equivalence relation + Closure under Operations

=

Congruence relation

Closure under operations can also be formulated this way:

Theorem (substitution theorem)

Let F and G be equivalent formulas. Let H be a formula with (at least) an occurrence of F as subformula. Then H and H' are equivalent, where H' is the result of substituting an arbitrary occurrence of F in H by G.

Equivalence (I)

Theorem

The following equivalences hold for every formulas F and G:

$(F \wedge F)$	\equiv	F	
$(F \lor F)$	\equiv	F	(Idempotence)
$(F \wedge G)$	\equiv	$(G \wedge F)$	
$(F \lor G)$	\equiv	$(G \vee F)$	(Commutativity)
$(F \wedge G) \wedge H)$	\equiv	$(F \land (G \land H))$	
$(F \lor G) \lor H)$	\equiv	$(F \lor (G \lor H))$	(Associativity)
$(F \land (F \lor G))$	\equiv	F	
$(F \lor (F \land G))$	\equiv	F	(Absorption)

$(F \land (G \lor H))$	\equiv	$((F \land G) \lor (F \land H))$	
$(F \lor (G \land H))$	≡	$((F \lor G) \land (F \lor H))$	(Distributivity)
$\neg \neg F$	\equiv	F	(Double negation)
$\neg(F \land G)$	\equiv	$(\neg F \lor \neg G)$	
$\neg(F \lor G)$	\equiv	$(\neg F \land \neg G)$	(deMorgan's Laws)
$(F \lor G)$	\equiv	F, if F is a tautology	
$(F \wedge G)$	≡	G, if F is a tautologie	(Tautology Laws)
$(F \lor G)$	≡	G, if F is unsatisfiable	
$(F \wedge G)$	\equiv	F, if F is unsatisfiable	(Unsatisfiability Laws)

Normal forms (II)

Definition (Normal forms)

A literal is an atomic formula or the negation of an atomic formula. (In the former case the literal is positive and negative in the latter).

Normal forms (I)

A formula F is in conjunctive normal form (**CNF**) if it is a conjunction of disjunctions of literals:

$$F = (\bigwedge_{i=1}^{n} (\bigvee_{j=1}^{m_i} L_{i,j})),$$

where $L_{i,j} \in \{A_1, A_2, \cdots\} \cup \{\neg A_1, \neg A_2, \cdots\}$

A formula F is in disjunctive normal form (**DNF**) if it is a disjunction of conjunctions of literals:

$$F = (\bigvee_{i=1}^{n} (\bigwedge_{j=1}^{m_i} L_{i,j})),$$

where $L_{i,j} \in \{A_1, A_2, \cdots\} \cup \{\neg A_1, \neg A_2, \cdots\}$

9

10

1. Substitute every occurrence of a subformula of the form

$$\neg \neg G \quad \text{by} \quad G$$

$$\neg (G \land H) \quad \text{by} \quad (\neg G \lor \neg H)$$

$$\neg (G \lor H) \quad \text{by} \quad (\neg G \land \neg H)$$

until no such formulas occur.

2. Substitute in every occurrence of a subformula of the form

 $\begin{array}{ll} (F \lor (G \land H)) & \mathsf{durch} & ((F \lor G) \land (F \lor H)) \\ ((F \land G) \lor H) & \mathsf{durch} & ((F \lor H) \land (G \lor H)) \end{array}$

until no such formulas occur.

Precedence

Operator precedence:

- $\leftrightarrow \quad \text{binds weaker than} \quad$
- \rightarrow $\;$ which binds weaker than
- \lor which binds weaker than
- \wedge $\;$ which binds weaker than

ㄱ .

So we have

$$A \leftrightarrow B \lor \neg C \to D \land \neg E \equiv (A \leftrightarrow ((B \lor \neg C) \to (D \land \neg E)))$$

But: well chosen parenthesis help to visually parse formulas.

A	В	C	F
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

DNF: Each row of the truth table with value 1 yields a conjunction, a 0 in column A yields $\neg A$, and a 1 yields A

$$(\neg A \land \neg B \land \neg C) \lor (\neg A \land B \land C)$$
$$\lor (A \land \neg B \land \neg C) \lor (A \land B \land C)$$

CNF: Each row of the truth table with value 0 yields a disjunction, a 0 in column A yields A, and a 1 yields $\neg A$

```
(A \lor B \lor \neg C) \land (A \lor \neg B \lor C)\land (\neg A \lor B \lor \neg C) \land (\neg A \lor \neg B \lor C)
```

14

13