Equivalence

Exercise

Which of the following equivalences hold?

Two formulas F and G are (semantically) equivalent if $\mathcal{A}(F)=\mathcal{A}(G)$ for every assignment \mathcal{A} that is suitable for both F and G. We write $F \equiv G$ to denote that F and G are equivalent.

$$
\begin{aligned}
(A \wedge(A \vee B)) & \equiv A \\
\neg(A \vee B) & \equiv(\neg A \wedge \neg B) \\
(A \wedge(B \vee C)) & \equiv((A \wedge B) \vee C) \\
(A \wedge(B \vee C)) & \equiv((A \wedge B) \vee(A \wedge C))
\end{aligned}
$$

Main logical questions

Observation

- Model checking

Let F be a formula and let \mathcal{A} be a suitable assignment.
Does $\mathcal{A}(F)=1$ hold?

- Satisfiability

Let F be a formula. Is F satisfiable ?

- Validity

Let F be a formula. Ist F valid?

- Consequence

Let F and G be formulas. Does $F \models G$ hold?

- Equivalence

Let F und G be formulas. Does $F \equiv G$ hold?

The following connections hold:

$$
\begin{array}{lll}
(F \rightarrow G) \text { is valid if and only if } & F \models G \\
(F \leftrightarrow G) \text { is valid if and only if } & F \equiv G
\end{array}
$$

Reductions between problems (I)

Reductions bewteen problems (II)

- Validity to Unsatisfiabilty (and back):

$$
\begin{array}{rll}
F \text { valid } & \text { iff } & \neg F \text { unsatisfiable } \\
F \text { unsatisfiable } & \text { iff } & \neg F \text { valid }
\end{array}
$$

- Validity to Consequence:

$$
F \text { valid } \quad \text { iff } \quad \text { true } \models F
$$

- Consequence to Validity:

$$
F \models G \quad \text { iff } \quad F \rightarrow G \text { valid }
$$

- Validity to Equivalence:

$$
F \text { valid } \quad \text { iff } \quad F \equiv \text { true }
$$

- Equivalence to Validity:

$$
F \equiv G \quad \text { iff } \quad F \leftrightarrow G \text { valid }
$$

Substitution theorem

Closure under operations can also be formulated this way:
Theorem (substitution theorem)
Let F and G be equivalent formulas. Let H be a formula with (at least) an occurrence of F as subformula. Then H and H^{\prime} are equivalent, where H^{\prime} is the result of substituting an arbitrary occurrence of F in H by G.

Equivalence (1)

Theorem

The following equivalences hold for every formulas F and G :

| $(F \wedge F)$ | $\equiv F$ | |
| ---: | :--- | ---: | :--- |
| $(F \vee F)$ | $\equiv F$ | (Idempotence) |
| $(F \wedge G)$ | $\equiv(G \wedge F)$ | |
| $(F \vee G)$ | $\equiv(G \vee F)$ | (Commutativity) |
| $((F \wedge G) \wedge H)$ | $\equiv(F \wedge(G \wedge H))$ | |
| $((F \vee G) \vee H)$ | $\equiv(F \vee(G \vee H))$ | (Associativity) |
| $(F \wedge(F \vee G))$ | $\equiv F$ | |
| $(F \vee(F \wedge G))$ | $\equiv F$ | (Absorption) |

| $(F \wedge(G \vee H))$ | $\equiv((F \wedge G) \vee(F \wedge H))$ | |
| ---: | :--- | ---: | ---: |
| $(F \vee(G \wedge H))$ | $\equiv((F \vee G) \wedge(F \vee H))$ | (Distributivity) |
| $\neg \neg F$ | $\equiv F$ | (Double negation) |
| $\neg(F \wedge G)$ | $\equiv(\neg F \vee \neg G)$ | |
| $\neg(F \vee G)$ | $\equiv(\neg F \wedge \neg G)$ | (deMorgan's Laws) |
| $(F \vee G)$ | $\equiv F$, if F is a tautology | |
| $(F \wedge G)$ | $\equiv G$, if F is a tautologie | (Tautology Laws) |
| $(F \vee G)$ | $\equiv G$, if F is unsatisfiable | |
| $(F \wedge G)$ | $\equiv F$, if F is unsatisfiable | (Unsatisfiability Laws) |

$(F \wedge(G \vee H)) \equiv((F \wedge G) \vee(F \wedge H))$
$(F \vee(G \wedge H)) \equiv((F \vee G) \wedge(F \vee H)) \quad$ (Distributivity)
$\neg(F \wedge G) \equiv(\neg F \vee \neg G)$
$\neg(F \vee G) \equiv(\neg F \wedge \neg G) \quad$ (deMorgan's Laws)
$(F \vee G) \equiv F$, if F is a tautology
$(F \wedge G) \equiv G$, if F is a tautologie (Tautology Laws)
$(F \vee G) \equiv G$, if F is unsatisfiable
$(F \wedge G) \equiv F$, if F is unsatisfiable (Unsatisfiability Laws)

Normal forms (I)

Normal forms (II)

Definition (Normal forms)

A literal is an atomic formula or the negation of an atomic formula. (In the former case the literal is positive and negative in the latter).
A formula F is in conjunctive normal form (CNF) if it is a
conjunction of disjunctions of literals:

$$
F=\left(\bigwedge_{i=1}^{n}\left(\bigvee_{j=1}^{m_{i}} L_{i, j}\right)\right)
$$

A formula F is in disjunctive normal form (DNF) if it is a disjunction of conjunctions of literals:

$$
F=\left(\bigvee_{i=1}^{n}\left(\bigwedge_{j=1}^{m_{i}} L_{i, j}\right)\right)
$$

where $L_{i, j} \in\left\{A_{1}, A_{2}, \cdots\right\} \cup\left\{\neg A_{1}, \neg A_{2}, \cdots\right\}$
where $L_{i, j} \in\left\{A_{1}, A_{2}, \cdots\right\} \cup\left\{\neg A_{1}, \neg A_{2}, \cdots\right\}$

1. Substitute every occurrence of a subformula of the form

$$
\begin{array}{rll}
\neg \neg G & \text { by } & G \\
\neg(G \wedge H) & \text { by } & (\neg G \vee \neg H) \\
\neg(G \vee H) & \text { by } & (\neg G \wedge \neg H)
\end{array}
$$

until no such formulas occur.
2. Substitute in every occurrence of a subformula of the form

$$
\begin{array}{lll}
(F \vee(G \wedge H)) & \text { durch } & ((F \vee G) \wedge(F \vee H)) \\
((F \wedge G) \vee H) & \text { durch } & ((F \vee H) \wedge(G \vee H))
\end{array}
$$

until no such formulas occur.

DNF: Each row of the truth table with value 1 yields a conjunction, a 0 in column A yields $\neg A$, and a 1 yields A

$$
\begin{aligned}
& (\neg A \wedge \neg B \wedge \neg C) \vee(\neg A \wedge B \wedge C) \\
& \vee(A \wedge \neg B \wedge \neg C) \vee(A \wedge B \wedge C)
\end{aligned}
$$

CNF: Each row of the truth table with value 0 yields a disjunction, a 0 in column A yields A, and a 1 yields $\neg A$

$$
\begin{aligned}
& (A \vee B \vee \neg C) \wedge(A \vee \neg B \vee C) \\
& \wedge(\neg A \vee B \vee \neg C) \wedge(\neg A \vee \neg B \vee C)
\end{aligned}
$$

Precedence

Operator precedence:

\leftrightarrow binds weaker than
\rightarrow which binds weaker than
\checkmark which binds weaker than
\wedge which binds weaker than
\neg.
So we have

$$
A \leftrightarrow B \vee \neg C \rightarrow D \wedge \neg E \equiv(A \leftrightarrow((B \vee \neg C) \rightarrow(D \wedge \neg E)))
$$

But: well chosen parenthesis help to visually parse formulas.

