Clause representation of CNF formulas

The DPLL algorithm

• Clause: set of literals (disjunction).

$$\{A, B\}$$
 stands for $(A \vee B)$.

• Formula: set of clauses (conjunction).

$$\{\{A,B\},\{\neg A,B\}\}\$$
 stands for $((A\vee B)\wedge(\neg A\vee B))$.

• Block: set of formulas (disjunction).

$$\{F,G\}$$
 stands for $(F\vee G)$.

The empty clause stands for false.

The empty formula stands for true.

The empty block stands for false.

- Developed by Davis, Putman, Loveland und Logemann
- Basis for the most efficient of today's solvers.
- Rules for transforming of blocks.
- If block B is transformed into B' then:

B is satisfiable (contains a satisfiable formula)

B' is satisfiable (contains a satisfiable formula)

The rules

• Using the rules we construct a sequence of blocks called a derivation.

- The first blocks contains only the formula to be checked.
- The formula is satisfiable iff the derivation ends with a block containing the empty formula.
- The formula is unsatisfiable iff the derivation ends with a block in which every formula contains the empty clause.

Simplification rules

- Reduce the number of clauses.
- Diverse variants of the algorithm which eliminate some rules or add others.
- The simplification rules are not compliting (i.e., there are formulas for which they alone cannot decide satisfiability).

Splitting rule

- Increases the number of formulas.
- Guarantees completeness.

Simplification rules

Splitting rule

• One-literal rule:

Pick a formula of the form $F = F' \cup \{L\}$.

Remove all clauses of F containing L.

Remove all occurrences of \overline{L} in the remaining clauses.

• Pure-literal rule:

Pick a formula such that L does not occur in any clause of F. Remove all clauses containing \overline{L} .

• Subsumption rule:

Pick a formula containing two clauses C, C' such that $C \subseteq C'$. Remove C'.

• Clean-up rule:

Remove all clauses of the form $C \cup \{L, \overline{L}\}$.

Pick an atomic formula ${\cal A}$ occurring in some formula ${\cal F}.$

Replace F by $F \cup \{A\}$ und $F \cup \{\neg A\}$.

Notice that the rule increases the number of formulas by 1.

Derivations

Correctness

- A derivation (from F) is a sequence $\{F\}, B_1, B_2 \dots$ of blocks constructed using the rules.
- A derivation is maximal if it is infinite or cannot be extended with a new block, i.e., no rule can be applied to its last block.
- A derivation is successful if it ends with a block containing the empty formula.
- A derivation is unsuccessful if it ends with a block in which every formula contains the empty clause.

Lemma: Let B_0, B_1, \ldots, B_n be a derivation.

For every $0 \le i \le n-1$ the block B_i contains a satisfiable formula iff B_{i+1} contains a satisfiable formula.

Lemma: Every maximal derivation is finite.

Lemma: If F is satisfiable, then every maximal derivation from F is successful.

Lemma: If F is unsatisfiable, then every maximal derivation from F is unsuccessful.