
Relational Datenbases

• Data stored as two-dimensional tables,

• A row is a data item, a column is a field.

• A key is a field (or set of fields) that identifies a data item.

1



Example: Table PLAYWRITERS

AUTHOR PLACE OF BIRTH YEAR OF BIRTH

Schiller Marbach 1759

Goethe Frankfurt (Main) 1749

Calderón Madrid 1600

Shakespeare Stratford 1564

von Kleist Frankfurt (Oder) 1777

The field AUTHOR is the key

2



Entity-Relationship Diagramms

SEASONTHEATER PLAY

ACTOR plays ROLE

PLAYWRITER

is author of

is under contract has

3



Relational scheme

• THEATER: TNAME, CITY

• SEASON: SEASON, YEAR, DURATION

• ACTOR: ID, NAME, CITY

• CONTRACT: ID, TNAME, SEASON, YEAR

• ROLES: CHARACTER, TITLE, TYPE

• PLAYER: ID, CHARACTER, YEAR, TNAME

• PLAY: TITLE, PREMIERE YEAR, PREMIERE PLACE

• PLAYWRITER: AUTHOR, BIRTHPLACE, BIRTH YEAR

4



Queries

Q1: List all plays (with TITLE, AUTHOR, YEAR) whose premiere

took place after 1800.

Q2: Find all actors (NAME, CITY) that have played in some

production of “Macbeth”.

Q3: Find all actors (NAME, CITY) that have played in their own city

a leading role in some play that premiered in Weimar.

5



Standard Query Language (SQL)

Basic query:

SELECT AUTHOR

FROM PLAYWRITER

WHERE BIRTHPLACE = ‘Madrid’

6



SQL-Query for Q3

SELECT A.NAME, A.CITY

FROM ACTOR A, PLAYER P, ROLE R,

PLAY PY

WHERE A.ID = P.ID

AND P.CHARACTER = R.CHARACTER

AND R.TITLE = P.TITLE

AND PY.PREMIERE PLACE = ‘Weimar’

AND R.TYPE = ‘Leading’

AND PY.PREMIERE PLACE = A.CITY

7



Connection to predicate logic

• Table −→ Predicate symbol of arity = number of fields

PLAYWRITER −→ Playwriter(author , birthplace, birth year)

• Data items −→ Structure A

PlaywriterA = { (Schiller, Marbach, 1759),

. . .

(vonKleist, Frankfurt(Oder), 1777)}

8



• SQL-query −→ Formula with free variables F (x1, . . . , xn)

SELECT AUTHOR

FROM PLAYWRITER

WHERE BIRTHPLACE = ‘Madrid’

Answ(author) = ∃ birth year :

Playwriter(author , ‘Madrid’, birth year)

• Answer → set of all authors au such that A(Answ(au)) = 1.

9



SQL-query for query Q3 (simplified)

SELECT A.NAME, A.CITY

FROM ACTOR A, PLAYER P, ROLE R,

WHERE A.ID = PR.ID

AND P.CHARACTER = R.CHARACTER

AND R.TYPE = ‘Leading’

Answ(name, city) = ∃ id , char , year , tname, title :

Actor(id , name, city) ∧

Player(id , char , year , tname) ∧

Role(char , title, ‘Leading’)

10



Nested queries

• Find all actors (NAME) that played ‘Lady Macbeth’ in 2007

SELECT A.NAME

FROM ACTOR A

WHERE (‘Lady Macbeth’, ‘2007’ ) IN

SELECT P.CHARACTER, P.YEAR

FROM PLAYER P

WHERE P.ID = A.ID

11



• Formula for the inner query:

Answ1 (id) = ∃ tname :

Player(id , ‘Lady Macbeth’, 2007, tname)

• Formula for the full query:

Answ(name) = ∃ id , city :

Actor(id , name, city) ∧ Answ1 (id)

12



Quantified queries

• Find all actors (NAME) that have played at least once

SELECT A.NAME

FROM ACTOR A

WHERE EXISTS

SELECT *

FROM PLAYER P

WHERE P.ID = A.ID

13



• Formula for the inner query:

Ans1 (id) = ∃ character , year , tname :

Player(id , character , year , tname)

• Formula for the query:

Answ(name) = ∃ id , city :

Actor(id , name, city) ∧ Ans1 (id)

14



Quantified queries II

• Find all actors (NAME) that have played all leading roles

Ans(name) = ∃ id , city :

Actor(id , name, city) ∧

∀ char , title :

Role(char , title, ‘Leading’)

−→

∃ year , tname :

Player(id , char , year , tname)

15



SQL query

SELECT A.NAME

FROM ACTOR A

WHERE NOT EXISTS

SELECT *

FROM ROLE R

WHERE NOT EXISTS

SELECT *

FROM PLAYER P

WHERE P.ID = A.ID

AND P.CHAR = R.CHAR

16



Definitions and notations

• We write x für {x1, . . . , xn}

∃ x for ∃x1 . . . ∃xn .

• A relation is a formula with free variables, its arity is the number

of free variables.

• R(x) denotes a relation with free variables x.

• A condition is a boolean combination of formulas of the form

x = a.

• B(x) denotes a condition with free variables x.

• If the variables are clear from the context then we write R or B

instead of R(x) or B(x).

17



Relation Algebra

• A formula R(x) of relation algebra has the form:

Tab(x)

σB(x′)(R) = R(x) ∧ B(x′) where x′ ⊆ x

πx′(R) = ∃ x′′ R(x) where x′ ⊆ x, x′′ = x \ x′

(R1 ∪ R2) = R1(x) ∨ R2(x)

(R1 − R2) = R1(x) ∧ ¬R2(x)

(R1 × R2) = R1(x) ∧ R2(y)

(R11i=jR2) = ∃z R1(x1, . . . , xi−1, z, xi+1, xn) ∧

R2(y1, . . . , yj−1, z, yj+1, ym)

18



SQL → relation algebra

SELECT AUTHOR

FROM PLAYWRITER

WHERE BIRTHPLACE = ‘Madrid’

Antw(author) = πauthor(σbirthplace=‘Madrid′(Playwriter))

19



Evaluation and optimization

• Compute the relations ‘bottom-up’ .

• Use equivalence rules to speed up evaluation. (Trivial) Examples:

σB1
(σB2

(R)) ≡ σB2
(σB1

(R))

πx(R) ≡ πx(πy(R)) if x ⊆ y

πx(σB(y)(R)) ≡ σB(y)(πx(R)) if x ⊇ y

πx∪y(R 1i=j S) ≡ πx(R) 1i=j πy(S) if xi /∈ x

and yj /∈ y

σB(x)(R ∪ S) ≡ σB(x)(R) ∪ σB(x)(S)

πx(R ∪ S) ≡ πx(R) ∪ πx(S)

20


	Relational Datenbases
	Example: Table PLAYWRITERS
	Entity-Relationship Diagramms
	Relational scheme
	Queries
	Standard Query Language (SQL)
	SQL-Query for Q3
	Connection to predicate logic
	SQL-query for query Q3 (simplified)
	Nested queries
	Quantified queries
	Quantified queries II
	SQL query
	Definitions and notations
	Relation Algebra
	SQL $
ightarrow $ relation algebra
	Evaluation and optimization

