Relational Datenbases

- Data stored as two-dimensional tables,
- A row is a data item, a column is a field.
- A key is a field (or set of fields) that identifies a data item.

Example: Table PLAYWRITERS

AUTHOR	PLACE OF BIRTH	YEAR OF BIRTH
Schiller	Marbach	1759
Goethe	Frankfurt (Main)	1749
Calderón	Madrid	1600
Shakespeare	Stratford	1564
von Kleist	Frankfurt (Oder)	1777

The field AUTHOR is the key

Entity-Relationship Diagramms

Relational scheme

- THEATER: <u>TNAME</u>, CITY
- SEASON: <u>SEASON</u>, <u>YEAR</u>, DURATION
- ACTOR: <u>ID</u>, NAME, CITY
- CONTRACT: ID, TNAME, SEASON, YEAR
- ROLES: <u>CHARACTER</u>, <u>TITLE</u>, TYPE
- PLAYER: <u>ID</u>, <u>CHARACTER</u>, <u>YEAR</u>, <u>TNAME</u>
- PLAY: <u>TITLE</u>, PREMIERE_YEAR, PREMIERE_PLACE
- PLAYWRITER: <u>AUTHOR</u>, BIRTHPLACE, BIRTH_YEAR

Queries

- Q1: List all plays (with TITLE, AUTHOR, YEAR) whose premiere took place after 1800.
- Q2: Find all actors (NAME, CITY) that have played in some production of "Macbeth".
- Q3: Find all actors (NAME, CITY) that have played in their own city a leading role in some play that premiered in Weimar.

Standard Query Language (SQL)

Basic query:

SELECTAUTHORFROMPLAYWRITERWHEREBIRTHPLACE = 'Madrid'

SQL-Query for Q3

SELECT A.NAME, A.CITY

- FROM ACTOR A, PLAYER P, ROLE R, PLAY PY
- WHERE A.ID = P.ID
 - **AND** P.CHARACTER = R.CHARACTER
 - **AND** R.TITLE = P.TITLE
 - **AND PY.PREMIERE_PLACE** = 'Weimar'
 - **AND** R.TYPE = 'Leading'
 - **AND** PY.PREMIERE_PLACE = A.CITY

Connection to predicate logic

- Table → Predicate symbol of arity = number of fields
 PLAYWRITER → Playwriter(author, birthplace, birth_year)
- Data items \longrightarrow Structure \mathcal{A} $Playwriter^{\mathcal{A}} = \{ \text{ (Schiller, Marbach, 1759)}, \}$

. . .

(vonKleist, Frankfurt(Oder), 1777)

• SQL-query \longrightarrow Formula with free variables $F(x_1, \ldots, x_n)$

SELECT AUTHOR
FROM PLAYWRITER
WHERE BIRTHPLACE = 'Madrid'

Answ(author) = \exists birth_year : Playwriter(author, 'Madrid', birth_year)

• Answer \rightarrow set of all authors au such that $\mathcal{A}(Answ(au)) = 1$.

SQL-query for query Q3 (simplified)

SELECT A.NAME, A.CITY

FROM ACTOR A, PLAYER P, ROLE R,

WHERE A.ID = PR.ID

 $\begin{array}{lll} \mathbf{AND} & \mathsf{P.CHARACTER} = \mathsf{R.CHARACTER} \\ \mathbf{AND} & \mathsf{R.TYPE} = `Leading' \end{array}$

 $Answ(name, city) = \exists id, char, year, tname, title :$ $Actor(id, name, city) \land$ $Player(id, char, year, tname) \land$ Role(char, title, `Leading')

Nested queries

• Find all actors (NAME) that played 'Lady Macbeth' in 2007

SELECT A.NAME
FROM ACTOR A
WHERE ('Lady_Macbeth', '2007') IN
SELECT P.CHARACTER, P.YEAR
FROM PLAYER P
WHERE P.ID = A.ID

• Formula for the inner query:

 $Answ1(id) = \exists tname :$ $Player(id, `Lady_Macbeth', 2007, tname)$

• Formula for the full query:

 $Answ(name) = \exists id, city:$ $Actor(id, name, city) \land Answ1(id)$

Quantified queries

• Find all actors (NAME) that have played at least once

SELECT A.NAME FROM ACTOR A WHERE EXISTS SELECT * FROM PLAYER P WHERE P.ID = A.ID • Formula for the inner query:

 $Ans1(id) = \exists character, year, tname :$ Player(id, character, year, tname)

• Formula for the query:

 $Answ(name) = \exists id, city:$ $Actor(id, name, city) \land Ans1(id)$

Quantified queries II

• Find all actors (NAME) that have played all leading roles

 $Ans(name) = \exists id, city :$ $Actor(id, name, city) \land$ $\forall char, title :$ Role(char, title, `Leading') \rightarrow $\exists year, tname :$

Player(id, char, year, tname)

SQL query

SELECT A.NAME

FROM ACTOR A

WHERE NOT EXISTS

SELECT *

FROM ROLE R

WHERE NOT EXISTS

SELECT *

FROM PLAYER P

WHERE P.ID = A.ID

AND P.CHAR = R.CHAR

Definitions and notations

- We write \mathbf{x} für $\{x_1, \ldots, x_n\}$ $\exists \mathbf{x}$ for $\exists x_1 \ldots \exists x_n$.
- A relation is a formula with free variables, its arity is the number of free variables.
- $R(\mathbf{x})$ denotes a relation with free variables \mathbf{x} .
- A condition is a boolean combination of formulas of the form x = a.
- $B(\mathbf{x})$ denotes a condition with free variables \mathbf{x} .
- If the variables are clear from the context then we write R or B instead of R(x) or B(x).

Relation Algebra

• A formula $R(\mathbf{x})$ of relation algebra has the form:

$$Tab(\mathbf{x})$$

$$\sigma_{B(\mathbf{x}')}(R) = R(\mathbf{x}) \land B(\mathbf{x}') \text{ where } \mathbf{x}' \subseteq \mathbf{x}$$

$$\pi_{\mathbf{x}'}(R) = \exists \mathbf{x}'' R(\mathbf{x}) \text{ where } \mathbf{x}' \subseteq \mathbf{x}, \ \mathbf{x}'' = \mathbf{x} \setminus \mathbf{x}'$$

$$(R_1 \cup R_2) = R_1(\mathbf{x}) \lor R_2(\mathbf{x})$$

$$(R_1 - R_2) = R_1(\mathbf{x}) \land \neg R_2(\mathbf{x})$$

$$(R_1 \times R_2) = R_1(\mathbf{x}) \land R_2(\mathbf{y})$$

$$(R_1 \bowtie_{i=j} R_2) = \exists z \ R_1(x_1, \dots, x_{i-1}, z, x_{i+1}, x_n) \land$$

$$R_2(y_1, \dots, y_{j-1}, z, y_{j+1}, y_m)$$

$\textbf{SQL} \rightarrow \textbf{relation algebra}$

SELECTAUTHORFROMPLAYWRITERWHEREBIRTHPLACE = 'Madrid'

 $Antw(author) = \pi_{author}(\sigma_{birthplace='Madrid'}(Playwriter))$

Evaluation and optimization

- Compute the relations 'bottom-up' .
- Use equivalence rules to speed up evaluation. (Trivial) Examples:

$$\begin{aligned} \sigma_{B_1}(\sigma_{B_2}(R)) &\equiv \sigma_{B_2}(\sigma_{B_1}(R)) \\ \pi_{\mathbf{x}}(R) &\equiv \pi_{\mathbf{x}}(\pi_{\mathbf{y}}(R)) & \text{if } \mathbf{x} \subseteq \mathbf{y} \\ \pi_{\mathbf{x}}(\sigma_{B(\mathbf{y})}(R)) &\equiv \sigma_{B(\mathbf{y})}(\pi_{\mathbf{x}}(R)) & \text{if } \mathbf{x} \supseteq \mathbf{y} \\ \pi_{\mathbf{x} \cup \mathbf{y}}(R \Join_{i=j} S) &\equiv \pi_{\mathbf{x}}(R) \Join_{i=j} \pi_{\mathbf{y}}(S) & \text{if } x_i \notin \mathbf{x} \\ & \text{and } y_j \notin \mathbf{y} \end{aligned}$$

$$\sigma_{B(\mathbf{x})}(R \cup S) \equiv \sigma_{B(\mathbf{x})}(R) \cup \sigma_{B(\mathbf{x})}(S)$$
$$\pi_{\mathbf{x}}(R \cup S) \equiv \pi_{\mathbf{x}}(R) \cup \pi_{\mathbf{x}}(S)$$