## Relational Datenbases

Example: Table PLAYWRITERS

- Data stored as two-dimensional tables,
- A row is a data item, a column is a field.
- A key is a field (or set of fields) that identifies a data item.

| AUTHOR | PLACE OF BIRTH | YEAR OF BIRTH |
| :---: | :---: | :---: |
| Schiller | Marbach | 1759 |
| Goethe | Frankfurt (Main) | 1749 |
| Calderón | Madrid | 1600 |
| Shakespeare | Stratford | 1564 |
| von Kleist | Frankfurt (Oder) | 1777 |

The field AUTHOR is the key

## Entity-Relationship Diagramms

## Relational scheme



- THEATER: TNAME, CITY
- SEASON: SEASON, YEAR, DURATION
- ACTOR: ID, NAME, CITY
- CONTRACT: ID, TNAME, SEASON, YEAR
- ROLES: CHARACTER, TITLE, TYPE
- PLAYER: ID, CHARACTER, YEAR, TNAME
- PLAY: TITLE, PREMIERE_YEAR, PREMIERE_PLACE
- PLAYWRITER: AUTHOR, BIRTHPLACE, BIRTH_YEAR


## Queries

Q1: List all plays (with TITLE, AUTHOR, YEAR) whose premiere took place after 1800.

Q2: Find all actors (NAME, CITY) that have played in some production of "Macbeth".
Q3: Find all actors (NAME, CITY) that have played in their own city a leading role in some play that premiered in Weimar.

Basic query:
SELECT AUTHOR
FROM PLAYWRITER
WHERE BIRTHPLACE = 'Madrid'

## SQL-Query for Q3

## SQL-query for query Q3 (simplified)

- SQL-query $\longrightarrow$ Formula with free variables $F\left(x_{1}, \ldots, x_{n}\right)$

SELECT AUTHOR
FROM PLAYWRITER
WHERE BIRTHPLACE = 'Madrid'

Answ(author) $=\exists$ birth_year $:$
Playwriter(author, 'Madrid', birth_year)

- Answer $\rightarrow$ set of all authors $a u$ such that $\mathcal{A}(\operatorname{Answ}(a u))=1$.

```
    SELECT A.NAME, A.CITY
    FROM ACTOR A, PLAYER P, ROLE R,
    WHERE A.ID = PR.ID
    AND P.CHARACTER = R.CHARACTER
    AND R.TYPE = 'Leading'
Answ(name, city) = \existsid, char, year, tname, title:
    Actor(id, name, city)^
    Player(id, char, year, tname) ^
    Role(char, title, 'Leading')
```


## Nested queries

- Formula for the inner query:
- Find all actors (NAME) that played 'Lady Macbeth' in 2007

| SELECT | A.NAME |  |
| :--- | :--- | :--- |
| FROM | ACTOR A |  |
| WHERE | ('Lady_Macbeth', '2007' ) IN |  |
|  | SELECT | P.CHARACTER, P.YEAR |
|  | FROM | PLAYER P |
|  | WHERE | P.ID = A.ID |

$$
\begin{aligned}
\text { Answ1 }(i d)= & \exists \text { tname : } \\
& \text { Player (id, 'Lady_Macbeth', 2007, tname) }
\end{aligned}
$$

- Formula for the full query:

$$
\begin{aligned}
\text { Answ }(\text { name })= & \exists i d, \text { city }: \\
& \operatorname{Actor}(\text { id }, \text { name }, \text { city }) \wedge \operatorname{Answ1}(\text { id })
\end{aligned}
$$

## Quantified queries

- Find all actors (NAME) that have played at least once

| SELECT | A.NAME |  |
| :--- | :--- | :--- |
| FROM | ACTOR A |  |
| WHERE | EXISTS |  |
|  | SELECT | $*$ |
|  | FROM | PLAYER P |
|  | WHERE | P.ID $=$ A.ID |

- Formula for the inner query:

$$
\begin{aligned}
\text { Ans1 }(i d)= & \exists \text { character, year, tname }: \\
& \text { Player }(i d, \text { character, year, tname })
\end{aligned}
$$

- Formula for the query:

```
\(\operatorname{Answ}(\) name \()=\exists i d\), city \(:\)
    \(\operatorname{Actor}(i d, n a m e\), city \() \wedge \operatorname{Ans1}(i d)\)
```


## Quantified queries II

- Find all actors (NAME) that have played all leading roles

```
Ans(name) = \existsid,city:
    Actor(id, name, city)^
    * char, title :
        Role(char, title, 'Leading')
        \exists year, tname :
        Player(id, char, year, tname)
```

```
SELECT A.NAME
FROM ACTOR A
WHERE NOT EXISTS
                                    SELECT *
                                    FROM ROLE R
                                    WHERE NOT EXISTS
                                    SELECT *
                                    FROM PLAYER P
                                    WHERE P.ID = A.ID
                                    AND P.CHAR = R.CHAR
```


## Definitions and notations

## Relation Algebra

- We write $\mathbf{x}$ für $\left\{x_{1}, \ldots, x_{n}\right\}$

$$
\exists \mathrm{x} \text { for } \exists x_{1} \ldots \exists x_{n}
$$

- A relation is a formula with free variables, its arity is the number of free variables.
- $R(\mathbf{x})$ denotes a relation with free variables $\mathbf{x}$.
- A condition is a boolean combination of formulas of the form $x=a$.
- $B(\mathbf{x})$ denotes a condition with free variables $\mathbf{x}$.
- If the variables are clear from the context then we write $R$ or $B$ instead of $R(\mathbf{x})$ or $B(\mathbf{x})$.
- A formula $R(\mathbf{x})$ of relation algebra has the form:

$$
\begin{aligned}
& \operatorname{Tab}(\mathbf{x}) \\
& \begin{array}{ll}
\sigma_{B\left(\mathbf{x}^{\prime}\right)}(R) & = \\
\pi_{\mathbf{x}^{\prime}}(R) & \\
(R) & \exists \mathbf{x}) \wedge B\left(\mathbf{x}^{\prime}\right) \quad \text { where } \mathbf{x}^{\prime} \subseteq \mathbf{x} \\
\left(R_{1} \cup R_{2}\right) & = \\
(\mathbf{x}) \quad \text { where } \mathbf{x}^{\prime} \subseteq \mathbf{x}, \mathbf{x}^{\prime \prime}=\mathbf{x} \backslash R_{2}(\mathbf{x}) \\
\left(R_{1}-R_{2}\right)= & R_{1}(\mathbf{x}) \wedge \neg R_{2}(\mathbf{x}) \\
\left(R_{1} \times R_{2}\right)= & R_{1}(\mathbf{x}) \wedge R_{2}(\mathbf{y}) \\
\left(R_{1} \bowtie_{i=j} R_{2}\right)= & \exists z \quad R_{1}\left(x_{1}, \ldots, x_{i-1}, z, x_{i+1}, x_{n}\right) \wedge \\
& \quad R_{2}\left(y_{1}, \ldots, y_{j-1}, z, y_{j+1}, y_{m}\right)
\end{array}
\end{aligned}
$$

## SQL $\rightarrow$ relation algebra

## Evaluation and optimization

- Compute the relations 'bottom-up'.
- Use equivalence rules to speed up evaluation. (Trivial) Examples:

$$
\begin{array}{rlrl}
\sigma_{B_{1}}\left(\sigma_{B_{2}}(R)\right) & \equiv \sigma_{B_{2}}\left(\sigma_{B_{1}}(R)\right) & & \\
\pi_{\mathbf{x}}(R) & \equiv \pi_{\mathbf{x}}\left(\pi_{\mathbf{y}}(R)\right) & & \text { if } \mathbf{x} \subseteq \mathbf{y} \\
\pi_{\mathbf{x}}\left(\sigma_{B(\mathbf{y})}(R)\right) & \equiv \sigma_{B(\mathbf{y})}\left(\pi_{\mathbf{x}}(R)\right) & & \text { if } \mathbf{x} \supseteq \mathbf{y} \\
\pi_{\mathbf{x} \cup \mathbf{y}}\left(R \bowtie_{i=j} S\right) & \equiv \pi_{\mathbf{x}}(R) \bowtie_{i=j} \pi_{\mathbf{y}}(S) & & \text { if } x_{i} \notin \mathbf{x} \\
& & \text { and } y_{j} \notin \mathbf{y} \\
\sigma_{B(\mathbf{x})}(R \cup S) & \equiv \sigma_{B(\mathbf{x})}(R) \cup \sigma_{B(\mathbf{x})}(S) & & \\
\pi_{\mathbf{x}}(R \cup S) & \equiv \pi_{\mathbf{x}}(R) \cup \pi_{\mathbf{x}}(S) & &
\end{array}
$$

