
AUTHOR	PLACE OF BIRTH	YEAR OF BIRTH
Schiller	Marbach	1759
Goethe	Frankfurt (Main)	1749
Calderón	Madrid	1600
Shakespeare	Stratford	1564
von Kleist	Frankfurt (Oder)	1777

• Data stored as two-dimensional tables,

- A row is a data item, a column is a field.
- A key is a field (or set of fields) that identifies a data item.

The field AUTHOR is the key

Q1:	List all plays (with TITLE, AUTHOR, YEAR) whose premiere took place after 1800.	Basic query:		
Q2:	Find all actors (NAME, CITY) that have played in some		SELECT	AUTHOR
	production of "Macbeth".		FROM	PLAYWRITER
Q3:	Find all actors (NAME, CITY) that have played in their own city		WHERE	BIRTHPLACE = 'Madrid'
	a leading role in some play that premiered in Weimar.			

SQL-Query for Q3

Connection to predicate logic

- SELECT A.NAME, A.CITY
 - FROM ACTOR A, PLAYER P, ROLE R, PLAY PY
- $\mathbf{WHERE} \quad A.ID = P.ID$
 - **AND** P.CHARACTER = R.CHARACTER
 - **AND** R.TITLE = P.TITLE
 - $\mathbf{AND} \quad \mathsf{PY}.\mathsf{PREMIERE_PLACE} = `Weimar'$
 - $\mathbf{AND} \quad \mathsf{R}.\mathsf{TYPE} = `\mathsf{Leading'}$
 - $\mathbf{AND} \quad \mathsf{PY}.\mathsf{PREMIERE_PLACE} = \mathsf{A}.\mathsf{CITY}$

- Table Predicate symbol of arity = number of fields
 PLAYWRITER Playwriter(author, birthplace, birth_year)
- $\bullet \ \ \mathsf{Data \ items} \longrightarrow \mathsf{Structure} \ \, \mathcal{A}$

 $Playwriter^{\mathcal{A}} = \{ (Schiller, Marbach, 1759), \}$

 $(vonKleist, Frankfurt(Oder), 1777)\}$

SQL-query for query Q3 (simplified)

• SQL-query \longrightarrow Formula with free variables $F(x_1, \ldots, x_n)$

SELECT AUTHOR FROM PLAYWRITER WHERE BIRTHPLACE = 'Madrid'

- Answ(author) = ∃ birth_year : Playwriter(author, 'Madrid', birth_year)
- Answer \rightarrow set of all authors au such that $\mathcal{A}(Answ(au)) = 1$.

SELECT A.NAME, A.CITY FROM ACTOR A, PLAYER P, ROLE R, WHERE A.ID = PR.ID AND P.CHARACTER = R.CHARACTER AND R.TYPE = 'Leading' $Answ(name, city) = \exists id, char, year, tname, title :$

 $Actor(id, name, city) \land$ $Player(id, char, year, tname) \land$ Role(char, title, 'Leading')

Nested queries

• Find all actors (NAME) that played 'Lady Macbeth' in 2007

SELECT A.NAME FROM ACTOR A WHERE ('Lady_Macbeth', '2007') IN SELECT P.CHARACTER, P.YEAR FROM PLAYER P WHERE P.ID = A.ID • Formula for the inner query:

 $Answ1(id) = \exists tname :$

Player(*id*, 'Lady_Macbeth', 2007, *tname*)

• Formula for the full query:

 $Answ(name) = \exists id, city:$ $Actor(id, name, city) \land Answ1(id)$ • Find all actors (NAME) that have played at least once

SELECT	A.NAME	
FROM	ACTOR A	
WHERE	EXISTS	
	SELECT	*
	FROM	PLAYER P
	WHERE	P.ID=A.ID

• Formula for the inner query:

 $Ans1(id) = \exists character, year, tname :$ Player(id, character, year, tname)

• Formula for the query:

 $Answ(name) = \exists id, city:$ $Actor(id, name, city) \land Ans1(id)$

Quantified queries II	SQL query

 Find all actors (NAME) that have played all leading roles 	SELECT	A.NAME		
	FROM	ACTOR A		
$Ans(name) = \exists id, city:$	WHERE	NOT EXISTS		
$Actor(id, name, city) \land$		SELECT	*	
$\forall char, title:$		FROM	ROLE R	
Role(char, title, `Leading')	har, title, 'Leading') WHERE NOT		NOT EXIS	STS
\longrightarrow			SELECT	*
$\exists year, tname:$			FROM	PLAYER P
Player(id, char, year, tname)			WHERE	P.ID=A.ID
			AND	P.CHAR = R.CHAR

1

Relation Algebra

- We write **x** für $\{x_1, \ldots, x_n\}$ $\exists \mathbf{x} \text{ for } \exists x_1 \ldots \exists x_n .$
- A relation is a formula with free variables, its arity is the number of free variables.
- $R(\mathbf{x})$ denotes a relation with free variables \mathbf{x} .
- A condition is a boolean combination of formulas of the form x = a.
- $B(\mathbf{x})$ denotes a condition with free variables \mathbf{x} .
- If the variables are clear from the context then we write R or B instead of $R(\mathbf{x})$ or $B(\mathbf{x})$.

• A formula $R(\mathbf{x})$ of relation algebra has the form:

$$Tab(\mathbf{x})$$

$$\sigma_{B(\mathbf{x}')}(R) = R(\mathbf{x}) \land B(\mathbf{x}') \text{ where } \mathbf{x}' \subseteq \mathbf{x}$$

$$\pi_{\mathbf{x}'}(R) = \exists \mathbf{x}'' R(\mathbf{x}) \text{ where } \mathbf{x}' \subseteq \mathbf{x}, \ \mathbf{x}'' = \mathbf{x} \setminus \mathbf{x}'$$

$$(R_1 \cup R_2) = R_1(\mathbf{x}) \lor R_2(\mathbf{x})$$

$$(R_1 - R_2) = R_1(\mathbf{x}) \land \neg R_2(\mathbf{x})$$

$$(R_1 \times R_2) = R_1(\mathbf{x}) \land R_2(\mathbf{y})$$

$$(R_1 \bowtie_{i=j} R_2) = \exists z \ R_1(x_1, \dots, x_{i-1}, z, x_{i+1}, x_n) \land$$

$$R_2(y_1, \dots, y_{j-1}, z, y_{j+1}, y_m)$$

SQL \rightarrow relation algebra Evaluation and optimization

- SELECT AUTHOR FROM PLAYWRITER
- $\mathbf{WHERE} \quad \mathsf{BIRTHPLACE} = \mathsf{`Madrid'}$

 $Antw(author) = \pi_{author}(\sigma_{birthplace=`Madrid'}(Playwriter))$

• Compute the relations 'bottom-up' .

• Use equivalence rules to speed up evaluation. (Trivial) Examples:

$$\begin{aligned} \sigma_{B_1}(\sigma_{B_2}(R)) &\equiv \sigma_{B_2}(\sigma_{B_1}(R)) \\ \pi_{\mathbf{x}}(R) &\equiv \pi_{\mathbf{x}}(\pi_{\mathbf{y}}(R)) & \text{if } \mathbf{x} \subseteq \mathbf{y} \\ \pi_{\mathbf{x}}(\sigma_{B(\mathbf{y})}(R)) &\equiv \sigma_{B(\mathbf{y})}(\pi_{\mathbf{x}}(R)) & \text{if } \mathbf{x} \supseteq \mathbf{y} \\ \pi_{\mathbf{x} \cup \mathbf{y}}(R \bowtie_{i=j} S) &\equiv \pi_{\mathbf{x}}(R) \bowtie_{i=j} \pi_{\mathbf{y}}(S) & \text{if } x_i \notin \mathbf{x} \\ & \text{and } y_j \notin \mathbf{y} \end{aligned}$$

$$\sigma_{B(\mathbf{x})}(R \cup S) \equiv \sigma_{B(\mathbf{x})}(R) \cup \sigma_{B(\mathbf{x})}(S)$$
$$\pi_{\mathbf{x}}(R \cup S) \equiv \pi_{\mathbf{x}}(R) \cup \pi_{\mathbf{x}}(S)$$