Herbrand structure

The Herbrand universe $D(F)$ of a closed formula F in Skolem form is the set of all terms without variables that can be constructed using the function symbols and constants of F.
In the special case that F contains no constants, we first pick an arbitrary constant, say a, and then construct the variable-free terms. Formally, $D(F)$ is inductively defined as follows:
(1) All constants occurring in F belong to $D(F)$; if no constant occurs in F, then $a \in D(F)$.
(2) For every n-ary function symbol f occurring in F, if $t_{1}, t_{2}, \ldots, t_{n} \in D(F)$ then $f\left(t_{1}, t_{2}, \ldots, t_{n}\right) \in D(F)$.

Let F be a closed formula in Skolem form. A structure $\mathcal{A}=\left(U_{\mathcal{A}}, I_{\mathcal{A}}\right)$ suitable for f is a Herbrand structure for F if it satisfies the following conditions:
(1) $U_{\mathcal{A}}=D(F)$, and
(2) for every n-ary function symbol f occurring in F and every $t_{1}, t_{2}, \ldots, t_{n} \in D(F): f^{\mathcal{A}}\left(t_{1}, t_{2}, \ldots, t_{n}\right)=f\left(t_{1}, t_{2}, \ldots, t_{n}\right)$.

Fundamental theorem of predicate logic

Theorem: A closed formula F in Skolem form is satisfiable if and only if it has a Herbrand model.
Proof: If the formula has a Herbrand model then it is satisfiable.
For the other direction let $\mathcal{A}=\left(U_{\mathcal{A}}, I_{\mathcal{A}}\right)$ be an arbitrary model of F. We define a Herbrand structure $\mathcal{B}=\left(U_{\mathcal{B}}, I_{\mathcal{B}}\right)$ as follows:

Universe	$U_{\mathcal{B}}=D(F)$
Function symbols	$f^{\mathcal{B}}\left(t_{1}, t_{2}, \ldots, t_{n}\right)=f\left(t_{1}, t_{2}, \ldots, t_{n}\right)$
Predicate symbols	$\left.\left(t_{1}, \ldots, t_{n}\right)\right) \in P^{\mathcal{B}}$ iff $\left(\mathcal{A}\left(t_{1}\right), \ldots, \mathcal{A}\left(t_{n}\right)\right) \in P^{\mathcal{A}}$

Claim: \mathcal{B} is also a model of F.

Claim: \mathcal{B} is also a model of F.
We prove a stronger assertion:
For every closed form G in Skolem form such that G^{*} only contains atomic formulas of F^{*} : if $\mathcal{A} \models G$ then $\mathcal{B} \models G$

Proof: By induction on the number n of universal quantifiers of G.
Basis $(n=0)$. Then G has no quantifiers at all.
It follows $\mathcal{A}(G)=\mathcal{B}(G)$, and we are done.

Herbrand expansion

Step $(n>0)$. Then $G=\forall x H$.

$$
\mathcal{A} \models G
$$

\Rightarrow for every $u \in U_{\mathcal{A}}: \mathcal{A}_{[x / u]}(H)=1$
\Rightarrow for every $u \in U_{\mathcal{A}}$ of the form $u=t^{\mathcal{A}}$
where $t \in D(G): \mathcal{A}_{[x / u]}(H)=1 \quad$ (Skolem!)
\Rightarrow for every $t \in D(G): \mathcal{A}_{\left[x / t \mathcal{A}^{\mathcal{A}}\right]}(H)=1$
\Rightarrow for every $t \in D(G): \mathcal{A}(H[x / t])=1 \quad$ (translation lemma)
\Rightarrow for every $t \in D(G): \mathcal{B}(H[x / t])=1 \quad$ (induction hypothesis)
\Rightarrow for every $t \in D(G): \mathcal{B}_{\left[x / t \mathcal{B}^{\mathcal{B}}\right]}(H)=1 \quad$ (translation lemma)
\Rightarrow for every $t \in D(G): \mathcal{B}[x / t](H)=1 \quad(\mathcal{B}$ is Herbrand structure)
$\Rightarrow \mathcal{B}(\forall x H)=1$
$\left(U_{\mathcal{B}}=D(G)\right)$
$\Rightarrow \mathcal{B} \models G$

Let $F=\forall y_{1} \forall y_{2} \ldots \forall y_{n} F^{*}$ be a closed formula in Skolem form. The Herbrand expansion of F is the set of atomic formulas

$$
E(F)=\left\{F^{*}\left[y_{1} / t_{1}\right]\left[y_{2} / t_{2}\right] \ldots\left[y_{n} / t_{n}\right] \mid t_{1}, t_{2}, \ldots, t_{n} \in D(F)\right\}
$$

Informally: the formulas of $E(F)$ are the result of substituting the variables of F^{*} by the terms of $D(F)$ in every possible way.

Gödel-Herbrand-Skolem's Theorem

Theorem: A closed formula F in Skolem form is satisfiable if and only if its Herbrand expansion $E(F)$ is satisfiable (in the sense of propositional logic).

Proof: It suffices to show: if $E(F)$ is satisfiable, then F has a Herbrand model.

Let F be of the form $\forall y_{1} \forall y_{2} \ldots \forall y_{n} F^{*}$. We have:
\mathcal{A} is a Herbrand model of F
iff for every $t_{1}, t_{2}, \ldots, t_{n} \in D(F)$:

$$
\mathcal{A}_{\left[y_{1} / t_{1}\right]\left[y_{2} / t_{2}\right] \ldots\left[y_{n} / t_{n}\right]}\left(F^{*}\right)=1
$$

iff for every $t_{1}, t_{2}, \ldots, t_{n} \in D(F)$:

$$
\mathcal{A}\left(F^{*}\left[y_{1} / t_{1}\right]\left[y_{2} / t_{2}\right] \ldots\left[y_{n} / t_{n}\right]\right)=1
$$

iff for every $G \in E(F)$ gilt $\mathcal{A}(G)=1$
iff \mathcal{A} is a model of $E(F)$

Gilmore's Algorithm

Theorem: A closed formula F in Skolem form is unsatisfiable if and only if some finite subset of the Herbrand expansion of $E(F)$ is unsatisfiable.

Proof: Follows immediately from the Gödel-Herbrand-Skolem's
Theorem and the Compactness Theorem.

Let F be closed formula in Skolem form and let $\left\{F_{1}, F_{2}, F_{3}, \ldots,\right\}$ be an enumeration of $E(F)$.

Input: F
$n:=0$;
repeat $n:=n+1$;
until $\left(F_{1} \wedge F_{2} \wedge \ldots \wedge F_{n}\right)$ is unsatisfiable;
report "unsatisfiable" and halt.

Löwenheim-Skolem's Theorem

Theorem: Every satisfiable formula of predicate logic has a model with a countable universe.

Proof: Let F be a formula, and let G be a sat-equivalent formula in Skolem form. Then for every set X :
F has a model with universe X iff
G has a model with universe X.

```
F satisfiable }=>\quadG\mathrm{ satisfiable
    => G has a Herbrand model (X,I
    => F has a model ( }X,\mp@subsup{I}{2}{}
    F}F\mathrm{ has a countable model
        (Herbrand universes are countable)
```

