Theorem: A set ${\bf S}$ of formulas is satisfiable iff every finite subset of ${\bf S}$ is satisfiable.

Equivalent formulation: A set S of formulas is unsatisfiable iff some finite subset of S is unsatisfiable.

 \Rightarrow : If ${\bf S}$ is satisfiable then every finite subset of ${\bf M}$ is satisfiable. Trivial.

 \Leftarrow : If every finite subset of ${\bf S}$ is satisfiable then ${\bf S}$ is satisfiable.

We prove that \mathbf{S} has a model.

For every $n \ge 1$ let $\mathbf{S_n}$ be the subset of formulas of \mathbf{S} containing only the atomic formulas A_1, \ldots, A_n . (More precisely: not containing any occurrence of A_{n+1}, A_{n+2}, \ldots) Observe: We have $\mathbf{S_1} \subseteq \mathbf{S_2} \subseteq \mathbf{S_3} \ldots$

Proof III

Claim 1: Each of the sets S_n has a model A_n .

Proof: Partition $\mathbf{S}_{\mathbf{n}}$ into equivalence classes containing equivalent formulas. There are at most 2^{2^n} classes (why?). Pick a representative from each class. The set of all representatives is finite, and so by hypothesis it has a model \mathcal{A}_n , which is also a model of $\mathbf{S}_{\mathbf{n}}$.

Proof II

Claim 2: A_n is model not only of S_n , but also of S_1, \ldots, S_{n-1} . Proof: follows immediately from $S_1 \subseteq S_2 \subseteq S_3 \ldots$ Claim 3: Every assignment \mathcal{A} satisfying the following property is a model of S:

For every $i \ge 1$ there is $j \ge i$ so that the restriction of \mathcal{A} to A_1, \ldots, A_i and the restriction of \mathcal{A}_j to A_1, \ldots, A_i coincide.

Proof: Since $j \ge i$ and A_j is model of S_j , it is also model of S_i . Since A and A_j coincide on A_1, \ldots, A_i , A is also model of S_i .

Proof IV

Claim 4: There is a truth assignment \mathcal{A} satisfying this condition.

Proof: We define A by means of an iterative procedure whose *n*-th iteration fixes $A(A_n)$.

We maintain a set of indices I, initially $I := \mathbb{N}$.

At the *n*-th step, if there are infinitely many indices $i \in I$ such that $\mathcal{A}_i(A_n) = 1$, then

- set $\mathcal{A}(A_n) := 1$, and
- remove from I all indices i such that $\mathcal{A}_i(A_n) = 0$;

and otherwise

- set $\mathcal{A}(A_n) := 0$, and
- remove from I all indices i such that $\mathcal{A}_i(A_n) = 1$.