Quantified Boolean Logic

Extension of propositional logic with boolean quantifiers.

We write
JA I’ as an abbreviation of F[A/0]V F[A/1]

VA F as an abbreviation of F[A/0] A F[A/1]

Abbreviations can be nested, and then they are “unfolded” inside-out:
JAVB (AN B)
abbreviates JA (AVO)A(AV1])
which abbreviates ((OVO)A(OV 1))V ((1VO)A(1V1))

Intuitively, 3AVB (A A B) “means”

there exists a truth value for A such that for every truth
value for B the formula (A A B) becomes true.



Modelling circuits with QBL

Gates as boolean formulas

Stable states as satisfying truth assignments

not and or Xor
- d
a—% b B_}c gj):} c bjDC
not(a,b) = —a<b
and(a,b,c) = (aNAb) < c
or(a,b,c) = (aVb)—c

xor(a, b, ¢) ((maAb)V (aA—b)) < c



Combining gates means combining formulas

Combine gates with A, 3 (and renaming of atomic formulas)

R(x,y,q,7,s) = Fw Ry (z,y,w,q) N Ra(y,w,r,s)



A full adder

cout cin

cin
>@— cout

full_adder(a, b, s, cin, cout) =

Jw; Jw,Fws xor(a, b, w) A xor(ws, cin, s) A and(a, b, wy) A

and(cin, wy, ws) A or(ws, ws, cout)



A n-bit ripple-carry adder

+ by b1 Do

cout So S1 Sp

Wire together n 1-bit adders where i-th carry-out is 7+1-st carry-in,
first carry is the carry-in and last is the carry-out.

b2 a2 bl al bO &0

cout [ | [ | [ | cin

adder adder adder
c3 | c2 | cl | cO




We obtain the formula

adder,(ag,...,an,_1,b0,...,bn_1,80,...,8p_1, Cin,cout) =
dcgdey ... e, (co = cin) A (¢, < cout) A
n—1
/\ full_adder(ai, bi, Siy Ciy Ci—i—l))
i=1

Problem: too slow. Each ¢; can only be computed after all of
Ci—1,-..,Co have been computed

Delay: 2n + 2 time units for n-bit numbers



A carry-look-ahead n-adder

Compute all of ¢,_1,...,¢co (and cout) concurrently

First step: given a,_1...ag and b,_1 ... by, identify the positions
i € [0,n — 1] that are

e Generating: ¢;;1 = 1 independently of ¢;.
These are the positions such that 1 = g; = and(a;, b;).

e Propagating: ¢;11 = ¢, i.e., ¢; Is ‘propagated’ to ¢; 1.
These are the positions such that 1 = p; = xor(a;, b;)

Observe: all g;, p; can be computed simultaneously



A carry-look-ahead n-adder

Second step: compute the ¢;'s by

i =gV PiANgi-1)V(Pi Apic1i AN Gi—a) V.. NV (Di Apic1i Ao A go)

Logarithmic delay in n using balanced V-trees and A-trees.
Delay for 64 bits: 23-56 units (instead of 130)



Description of the circuit (for 4 bits)

cin RootCell — COUL

NodeCell NodeCell
' LeafCell ' ' LeafCell ' ' LeafCell ' ' LeafCell '

B S AB S AB, S Ag By 33




Description of the circuit ||

R R = =

LeafCell circuit

10



Description of the circuit Il

4 Z

11



Description of the circuit IV

0 0 0 0 1 1 1 =1
I:1 |:2 El E2 Fl |:2 El E2

NodeCell circuit

12



cin

Description of the circuit V

Q[ e

RootCell circuit

13



Verification of the carry-look-ahead n-adder

Check validity of

adder,(ag,...,an,_1,b0,...,bn_1,80,...,5,_1, Cin,cout)
N
cla,(ag,...,a,-1,b0,...,00n_1,80,...,80_1, Cin,cout)

Results of the SAT 2002 competition on a variant of this problem:

e Task was to compare 2, 4, 8, ..., 256 bits adders (8 problems)

e From 26 variables and 70 3CNF clauses to 4584 variables and
13226 clauses

e Fastest solver (Zchaff) checked all 8 problems in 14 seconds

e More info at www.satcompetition.org

Rule-of-thumb: circuits with some hundreds of gates are routinely
solved

14



	Quantified Boolean Logic
	Modelling circuits with QBL
	Combining gates means combining formulas
	A full adder
	A $n$-bit ripple-carry adder
	A carry-look-ahead $n$-adder
	A carry-look-ahead $n$-adder
	Description of the circuit (for 4 bits)
	Description of the circuit II
	Description of the circuit III
	Description of the circuit IV
	Description of the circuit V
	Verification of the carry-look-ahead $n$-adder

