Quantified Boolean Logic

Modelling circuits with QBL

Extension of propositional logic with boolean quantifiers.
We write

$$
\begin{array}{lll}
\exists A F & \text { as an abbreviation of } & F[A / 0] \vee F[A / 1] \\
\forall A F & \text { as an abbreviation of } & F[A / 0] \wedge F[A / 1]
\end{array}
$$

Abbreviations can be nested, and then they are "unfolded" inside-out:

	$\exists A \forall B(A \wedge B)$
abbreviates	$\exists A(A \vee 0) \wedge(A \vee 1)$
which abbreviates	$((0 \vee 0) \wedge(0 \vee 1)) \vee((1 \vee 0) \wedge(1 \vee 1))$

Intuitively, $\exists A \forall B(A \wedge B)$ "means"
there exists a truth value for A such that for every truth value for B the formula $(A \wedge B)$ becomes true.

Gates as boolean formulas

Stable states as satisfying truth assignments

$$
\begin{array}{ll}
\operatorname{not}(a, b) & \equiv \neg a \leftrightarrow b \\
\operatorname{and}(a, b, c) & \equiv(a \wedge b) \leftrightarrow c \\
\operatorname{\operatorname {or}(a,b,c)} & \equiv(a \vee b) \leftrightarrow c \\
\operatorname{xor}(a, b, c) & \equiv((\neg a \wedge b) \vee(a \wedge \neg b)) \leftrightarrow c
\end{array}
$$

Combining gates means combining formulas

$$
R(x, y, q, r, s)=\exists w R_{1}(x, y, w, q) \wedge R_{2}(y, w, r, s)
$$

A full adder

	cout	cin
\ldots	\ldots	
+	\ldots	\ldots
+	b	\cdots
	\ldots	s
	\ldots	

full_adder $(a, b, s$, cin, cout $) \equiv$
$\exists w_{1} \exists w_{2} \exists w_{3} \operatorname{Xor}\left(a, b, w_{1}\right) \wedge \operatorname{xor}\left(w_{1}, \operatorname{cin}, s\right) \wedge \operatorname{and}\left(a, b, w_{2}\right) \wedge$ $\operatorname{and}\left(\operatorname{cin}, w_{1}, w_{3}\right) \wedge \operatorname{or}\left(w_{3}, w_{2}\right.$, cout $)$

A n-bit ripple-carry adder

	c_{2}	c_{1}	cin	$(=0)$
	a_{2}	a_{1}	a_{0}	
+	b_{2}	b_{1}	b_{0}	
cout	s_{2}	s_{1}	s_{0}	

Wire together n 1-bit adders where i-th carry-out is $i+1$-st carry-in, first carry is the carry-in and last is the carry-out.

A carry-look-ahead n-adder

Compute all of c_{n-1}, \ldots, c_{0} (and cout) concurrently
First step: given $a_{n-1} \ldots a_{0}$ and $b_{n-1} \ldots b_{0}$, identify the positions $i \in[0, n-1]$ that are

- Generating: $c_{i+1} \equiv 1$ independently of c_{i}.

These are the positions such that $1=g_{i} \equiv \operatorname{and}\left(a_{i}, b_{i}\right)$.

- Propagating: $c_{i+1} \equiv c_{i}$, i.e., c_{i} is 'propagated' to c_{i+1}.

These are the positions such that $1=p_{i} \equiv \operatorname{xor}\left(a_{i}, b_{i}\right)$
Observe: all g_{i}, p_{i} can be computed simultaneously

We obtain the formula

$$
\begin{gathered}
\operatorname{adder}_{n}\left(a_{0}, \ldots, a_{n-1}, b_{0}, \ldots, b_{n-1}, s_{0}, \ldots, s_{n-1}, \text { cin }, \text { cout }\right) \equiv \\
\exists c_{0} \exists c_{1} \ldots \exists c_{n}\left(c_{0} \leftrightarrow \operatorname{cin}\right) \wedge\left(c_{n} \leftrightarrow \text { cout }\right) \wedge \\
n-1 \\
\bigwedge_{i=1}^{\left.n \text { full_adder }\left(a_{i}, b_{i}, s_{i}, c_{i}, c_{i+1}\right)\right)}
\end{gathered}
$$

Problem: too slow. Each c_{i} can only be computed after all of c_{i-1}, \ldots, c_{0} have been computed

Delay: $2 n+2$ time units for n-bit numbers

A carry-look-ahead n-adder

Second step: compute the c_{i} 's by
$c_{i} \equiv g_{i} \vee\left(p_{i} \wedge g_{i-1}\right) \vee\left(p_{i} \wedge p_{i-1} \wedge g_{i-2}\right) \vee \ldots \vee\left(p_{i} \wedge p_{i-1} \wedge \ldots \wedge g_{0}\right)$
Logarithmic delay in n using balanced \vee-trees and \wedge-trees.
Delay for 64 bits: 23-56 units (instead of 130)

Description of the circuit III

\otimes circuit

LeafCell circuit

Description of the circuit IV

Description of the circuit V

RootCell circuit

Verification of the carry-look-ahead n-adder

Check validity of

$$
\begin{gathered}
\operatorname{adder}_{n}\left(a_{0}, \ldots, a_{n-1}, b_{0}, \ldots, b_{n-1}, s_{0}, \ldots, s_{n-1}, \text { cin, cout }\right) \\
\Leftrightarrow \\
\operatorname{cla}_{n}\left(a_{0}, \ldots, a_{n-1}, b_{0}, \ldots, b_{n-1}, s_{0}, \ldots, s_{n-1}, \text { cin, cout }\right)
\end{gathered}
$$

Results of the SAT 2002 competition on a variant of this problem:

- Task was to compare $2,4,8, \ldots, 256$ bits adders (8 problems)
- From 26 variables and 70 3CNF clauses to 4584 variables and 13226 clauses
- Fastest solver (Zchaff) checked all 8 problems in 14 seconds
- More info at www.satcompetition.org

Rule-of-thumb: circuits with some hundreds of gates are routinely solved

