Quantified Boolean Logic

Extension of propositional logic with boolean quantifiers.

We write
JA F  as an abbreviation of F[A/0] V F[A/1]

VA F as an abbreviation of F[A/0] A F[A/1]

Abbreviations can be nested, and then they are “unfolded” inside-out:

JAVYB (A A B)
abbreviates JA(AVO)A(AV])
which abbreviates ((0VO)A(0V 1))V ((1VO)A(1V1))

Intuitively, 3JAVB (A A B) “means”

there exists a truth value for A such that for every truth
value for B the formula (A A B) becomes true.

Combining gates means combining formulas

Combine gates with A, 3 (and renaming of atomic formulas)

X y
a b a
Rl ¢ b R2
w
d c d
q R r s

R(‘/E?y? q,T, S) = Jdw Rl('x?y?w? Q> A R2<y7wur7 S)

Modelling circuits with QBL

Gates as boolean formulas

Stable states as satisfying truth assignments

not and or xor
a
e D>b B-e 8)-c B
not(a,b) = —a<b
and(a,b,c) = (aAb)<—c
or(a,b,c) = (aVb)<—c
xor(a,b,c) = ((maAb)V(aA-b))«—c

A full adder

cout can

a

a —o wl
DD
cin & w3
——— cout
(e

full adder(a, b, s, cin, cout) =

Jw; JweFws xor(a, b, w1) A xor(wy, cin, s) A and(a, b, ws) A

and(cin, wy, ws) A or(ws, we, cout)



A n-bit ripple-carry adder

o ¢ cn (=0)
a2 A1 Qo
+ by b1 bo

cout S9 81 Sp

Wire together n 1-bit adders where i-th carry-out is 7+1-st carry-in,
first carry is the carry-in and last is the carry-out.

b2 a2 bl al b0 a0
cout | | || cin
adder adder |—| adder |7
c3 _ c2 I cl I c0
2 sl 0

A carry-look-ahead n-adder

Compute all of ¢;,—1,...,co (and cout) concurrently

First step: given a,_1...ag and b,_1 ... by, identify the positions
i € [0,n — 1] that are

e Generating: ¢;;1 = 1 independently of ¢;.
These are the positions such that 1 = g; = and(a;, b;).

e Propagating: ¢;41 = ¢, i.e., ¢; is ‘propagated’ to ¢; ;.
These are the positions such that 1 = p; = xor(a;, b;)

Observe: all g;, p; can be computed simultaneously

We obtain the formula

adder,,(ag, ..., a,-1,b0, .., b0_1,80, -, 8n_1, Cin,cout) =
deodey ... Fep (co <= cin) A (¢, < cout) A
n—1
/\ full,adder(a,-, bz', Si, Ci, Ci—i—l))
i=1

Problem: too slow. Each ¢; can only be computed after all of
Ci_1,...,Co have been computed

Delay: 2n + 2 time units for n-bit numbers

A carry-look-ahead n-adder

Second step: compute the ¢;'s by

CZ-Egi\/(pi/\gi,l)\/(pi/\pi,l/\gi,g)\/...\/(pi/\pi,l/\.../\go)

Logarithmic delay in n using balanced V-trees and A-trees.
Delay for 64 bits: 23-56 units (instead of 130)



Description of the circuit (for 4 bits)

cin @ cout

4' NodecCell |7
NodeCell NodeCell

LeafCell LeafCell LeafCell LeafCell

A B S AB S A B; S5

Description of the circuit 11l

~
J

Y2
Y1

Q) circuit

Description of the circuit |l

R R =1 =

4 N

A0

S A B

LeafCell circuit

Description of the circuit IV

(®)

-
N\

0 0 0 0 1 1 1 1
I:l FZ El E2 I:l FZ El E2

NodeCell circuit



cin

Description of the

circuit V

YN
@ }_ cout
\_ /
Fi Fs E, E

RootCell circuit

Verification of the carry-look-ahead n-adder

Check validity of

adder,,(ag, ..., a,-1,b0, ., bn_1,80, -, Sn_1, Cin,cout)
=
cla,(ag,...,an_1,b0,...,by_1,50,-..,Sn_1, Cin,cout)

Results of the SAT 2002 competition on a variant of this problem:
e Task was to compare 2, 4, 8, ..., 256 bits adders (8 problems)

e From 26 variables and 70 3CNF clauses to 4584 variables and
13226 clauses

e Fastest solver (Zchaff) checked all 8 problems in 14 seconds
e More info at www.satcompetition.org

Rule-of-thumb: circuits with some hundreds of gates are routinely
solved



