
Quantified Boolean Logic

Extension of propositional logic with boolean quantifiers.

We write

∃A F as an abbreviation of F [A/0] ∨ F [A/1]

∀A F as an abbreviation of F [A/0] ∧ F [A/1]

Abbreviations can be nested, and then they are “unfolded” inside-out:

∃A∀B (A ∧B)

abbreviates ∃A (A ∨ 0) ∧ (A ∨ 1)

which abbreviates ((0 ∨ 0) ∧ (0 ∨ 1)) ∨ ((1 ∨ 0) ∧ (1 ∨ 1))

Intuitively, ∃A∀B (A ∧B) “means”

there exists a truth value for A such that for every truth

value for B the formula (A ∧B) becomes true.

1

Modelling circuits with QBL

Gates as boolean formulas

Stable states as satisfying truth assignments

a b

not

a
b c

or

ca
b

xor

a
b c

and

not(a, b) ≡ ¬a ↔ b

and(a, b, c) ≡ (a ∧ b) ↔ c

or(a, b, c) ≡ (a ∨ b) ↔ c

xor(a, b, c) ≡ ((¬a ∧ b) ∨ (a ∧ ¬b)) ↔ c

2

Combining gates means combining formulas

Combine gates with ∧, ∃ (and renaming of atomic formulas)

R1 R2

R

w

b

q sr

x y

a a

c

c
b

dd

R(x, y, q, r, s) = ∃w R1(x, y, w, q) ∧R2(y, w, r, s)

3

A full adder

cout cin . . .

. . . a . . .

+ . . . b . . .

. . . s . . .

w1

w2

w3

a
b

cout
cin

s

full adder(a, b, s, cin, cout) ≡
∃w1∃w2∃w3 xor(a, b, w1) ∧ xor(w1, cin, s) ∧ and(a, b, w2) ∧

and(cin, w1, w3) ∧ or(w3, w2, cout)

4

A n-bit ripple-carry adder

c2 c1 cin (= 0)

a2 a1 a0

+ b2 b1 b0

cout s2 s1 s0

Wire together n 1-bit adders where i-th carry-out is i+1-st carry-in,

first carry is the carry-in and last is the carry-out.

cin
adder adder adder

b2 a2 b1 a1 b0 a0

s0s1s2

c0c2 c1

cout

c3

5

We obtain the formula

addern(a0, . . . , an−1, b0, . . . , bn−1, s0, . . . , sn−1, cin, cout) ≡
∃c0∃c1 . . . ∃cn (c0 ↔ cin) ∧ (cn ↔ cout) ∧

n−1∧
i=1

full adder(ai, bi, si, ci, ci+1))

Problem: too slow. Each ci can only be computed after all of

ci−1, . . . , c0 have been computed

Delay: 2n + 2 time units for n-bit numbers

6

A carry-look-ahead n-adder

Compute all of cn−1, . . . , c0 (and cout) concurrently

First step: given an−1 . . . a0 and bn−1 . . . b0, identify the positions

i ∈ [0, n− 1] that are

• Generating: ci+1 ≡ 1 independently of ci.

These are the positions such that 1 = gi ≡ and(ai, bi).

• Propagating: ci+1 ≡ ci, i.e., ci is ‘propagated’ to ci+1.

These are the positions such that 1 = pi ≡ xor(ai, bi)

Observe: all gi, pi can be computed simultaneously

7

A carry-look-ahead n-adder

Second step: compute the ci’s by

ci ≡ gi ∨ (pi ∧ gi−1) ∨ (pi ∧ pi−1 ∧ gi−2) ∨ . . . ∨ (pi ∧ pi−1 ∧ . . . ∧ g0)

Logarithmic delay in n using balanced ∨-trees and ∧-trees.

Delay for 64 bits: 23-56 units (instead of 130)

8

Description of the circuit (for 4 bits)

A0 B0 S0 A1 S1B1 A2B2 S2 A3 B3 S3

LeafCell LeafCell LeafCell LeafCell

NodeCell

NodeCell

NodeCell

RootCellcin cout

9

Description of the circuit II

F1 F2 E1 E2

BAS

LeafCell circuit

10

Description of the circuit III

x 2
x 1

y1

y2

1 z 2z

⊗
circuit

11

Description of the circuit IV

1
0EF2

0F1
0 E2

0 F1
1 F2

1 E1
1 E2

1

E1 E2F1 F2

NodeCell circuit

12

Description of the circuit V

E1 E2F1 F2

cout
cin

RootCell circuit

13

Verification of the carry-look-ahead n-adder

Check validity of

addern(a0, . . . , an−1, b0, . . . , bn−1, s0, . . . , sn−1, cin, cout)

⇔
clan(a0, . . . , an−1, b0, . . . , bn−1, s0, . . . , sn−1, cin, cout)

Results of the SAT 2002 competition on a variant of this problem:

• Task was to compare 2, 4, 8, . . . , 256 bits adders (8 problems)

• From 26 variables and 70 3CNF clauses to 4584 variables and

13226 clauses

• Fastest solver (Zchaff) checked all 8 problems in 14 seconds

• More info at www.satcompetition.org

Rule-of-thumb: circuits with some hundreds of gates are routinely

solved
14

