Binary Decision Diagrams

Binary Decision Diagrams (BDDs) are a class of graphs that can be
used as data structure for compactly representing boolean functions.

BDDs were introduced by R. Bryant in 1986.

BDDs are used to solve equivalence problems between formulas of
propositional logic.

Very important in the areas of hardware design and hardware
optimization.

Graphs

Recall some basic graph-theoretical concepts:

directed graph node edge
predecessor successor path cycle

acyclic graph tree forest

Boolean Functions

A boolean function of arity n > 1 is a function {0,1}" — {0, 1}.

Examples:

1 ifﬂ?llerﬂﬁQ:l

or(ry, xa) = {

0 if.CCl:OOrCCQ:O

if 2y = 1
if_then_else(xl, Lo, ZCg) — 2 I i
rxs Ifxzy =0

/.B.: if_then_else(1,0,1) = 0, if_then_else(0,0,1) =1

1 if 1+ Lo = 3Ty

Sum(mlax27$37$4) — { O th]
otherwise

Z.B.:sum(1,1,1,0) = 1 (because 1 + 1 = 10),
sum(0,0,0,1) = 0 (because 0 + 0 = 00).

1 if the majority of
majority,, (T1,...,%,) = X1, ...,T, has value 1

0 otherwise

Z.B.: majority,(1,1,0,0) = 0, majority;(1,0,1) =1

1 if the number of inputs z1,..., 2,

parity, (1, ...,T,) = equal to 1 is even
0 otherwise

Z.B.: parity;(1,0,1) = 1, parity,(1,0) =0

Formulas and boolean functions

Let F' be a formula, and let n be a number such that all atomic
formulas occurring in F' belong to {A,...,A,}.

Example: FF' = Ay A Ay, n = 2, but also n = 3!

We define the boolean function f7:{0,1}" — {0, 1}:

fr(xy,...,x,) = truth value of F' under the assignment

that sets A;,..., A, toz1,..., 2,

Example: For F' = A; A\ Ay

f2(0,1) = valueof 0A1=0
f2(0,1,1) = valueof 0A1=0

Remark: If all of {A,..., A,} occur in F', then f}: is essentially the
truth table of F'.

Convention: We write e.g. f(x1,22,23) = 21 V (22 A 021),
meaning f = f3 for the formula F = A; V (Ay A —Ay).

Fact: Let F] and F5 be two formulas, and let n be a number such

that all atomic formulas occurring in F} or F5 belong to
{Al, Ce ,An} Then f?vl — fl% 1ff F1 = F2.

Example: F1 = Al, Fg = Al N\ (AQ V _IAQ).

f7,(0,0) = 0 = f;(0,0)
fr,(0,1) = 0 = f5(0,1)
f7(1,0) = 1 = f;(1,0)
fr(11) = 1 = fi(1,1)

Convention: The constants 0 and 1 represent the only two boolean
functions of arity 0.

sum as binary decision tree

A boolean function can be represented by a decision tree

Variable order

A decision tree can use a variable order different from the order used
In the function.

A variable order is a bijection

b:{1,....n} = {x,...,2,}

We say that b(1),b(2),b(3),...,b(n) are the first, second, third, ...,
n-th variable w.r.t. the order 0.

We denote the bijection b(1) = x;,,...,b(n) = x;_ by

Tip < Tjy < oo < T4, -

11

Binary decision trees

A decision tree for the variable order x;, < ... < x; Is a tree
satisfying the following conditions:

(1) All leaves are labelled by 0 or by 1.

(2) All other nodes are labelled by a variable and have exactly two
children, the O-child and the 1-child. The edges leading to these
children are labelled by O resp. by 1.

If the root is not a leave, then it is labelled by x;, .

If a node is labelled by z; then its two children are leaves.

—~ A~
Gl B~ W
~— ~— —

If a node is labelled by x;, and j < n, then its two children are
labelled by ;. ;.

12

Every path of a decision tree determines an assignment of the
variables z;,,...x; and vice versa.

The boolean function fr represented by a decision tree 1T’ is defined
as follows:

fr(xy,...,x,) = label of the leaf reached by the path corresponding

to the assignment z;, x;, ... x;

n

A binary decision forest ist a forest of decision trees with the same
variable order. A decision forest represents the set of functions
represented by its elements.

13

Binary Decision Diagrams (informally)

A BDD (multiBDD) is a “compact representation” of a binary
decision tree (decision forest).

A BDD (multiBDD) is obtained from a decision tree (forest) through
repeated application of two compression rules (see example in the
next slide):

e Rule 1: Sharing of identical subtrees.

e Rule 2: Elimination of nodes for which the 0-child and the
1-child coincide (redundant nodes).

The rules are applied until all subtrees are different and there are no
redundant nodes.

14

Example: sharing of subtrees

Example: sharing of subtrees

All O- und 1-leaves are merged.

Example: sharing of subtrees

./‘ 9‘@

1 0

|dentical x4-nodes are merged.

Example: sharing of subtrees

o \

@

|dentical x3-nodes are merged.

Example: removing redundant nodes

Example: removing redundant nodes

@@ | / .

Redundant z4-node is removed

Formal Definition of BDDs

A BDD for a given variable order is an acyclic directed graph
satisfying the following properties:

(1)
(2)

(3)

There is exactly one node without predecessors (the root)

There is one or two nodes without succesors, labelled by 0 or 1
(if there are two then they carry different labels).

All other nodes are labelled by a variable and have exactly two
distinct children, the O-child and the 1-child. The edges leading
to these children are labelled by O resp. by 1.

A child of a node is labelled by 0, by 1, or by a variable larger
than the label of its parent w.r.t. the variable order.

All descendant-closed subgraphs of the graph are
non-isomorphic.

21

MultiBDDs

A multiBDD is an acyclic graph satisfying (2)-(5) together a
distinguished nonempty subset of nodes called the roots.

Every node without predecessors is a root, but other nodes may also
be roots.

A multiBDD represents a set of boolean functions, one for each root.

22

Remarks

Remark: A “closed subgraph™ of a BDD is again a BDD.

Remark: The function true,(z1,...,x,) given by
true,(z1,...,x,) = 1 for every z1,z, € {0,1}"

Is represented, for every n > 1 and for every variable order, by the
BDD consisting of one single node labelled by 1.

Similarly for false, (x1,...,z,)

23

Relevance of variable orders

The variable order can have large impact on the size of the BDD.

Example:

f(x1, ... xo) = (X1 < Tpi1) A (X2 = Tpgo) Ao A (X, < T9y)

Size grows exponentially inn for z1 < - < x, < Tpp1 < -+ < Top,.

Size grows linearly in n for 1 < 1.1 < X9 < Tpyo < ... < T, < Top,.

Problem in practice: finding a good order.

24

Canonicity of BDDs

We show that for a given boolean function and a given variable order
there is a unique BDD representing the function.

More generally (but simpler to prove!), we show that for every set of
boolean functions of the same arity and for every variable order there
is a unique multiBDD representing the set.

25

The functions f|0] und f[1]

Lemma |: Let f be a boolean function of arity n > 1. There are
exactly two boolean functions f|0] und f[1] of arity (n — 1) satisfying

f(x1,...,x,) = (mxAf[0](x2, ...,))V (t1Af1](22, ..., 20)) (%)

Proof: The functions f|0] and f[1]| defined by

flol(zg, ..., x,) = f(0,29,...,2,) and

flll(zo, ..., x,) = f(1,29,...,x,) satisfy (*).

Let fy and f; be arbitrary functions satisfying (*). Then
flxy,...,zn) = (mx1 A folza, ... x,)) V(21 A fi(xa, ..., x,))
By the properties of V and A we have

f(0,z9,...,2,) = fo(xa,...,x,) and together with
f(0,22,...,x,) = f|0](xa, ..., x,) we get fo = f[O].

The proof that f; = f[1] holds is analogous.

26

Let f:{0,1}" — {0, 1} be a boolean function, let B be a BDD with
variable order 1 < o < ... < x,,, and let v be the root of B. Define
the nodes v|0] and v|1] as follows:

(1) If v is labelled by x1, then v|0] and v[1] are the O-child and the
1-child of v.

(2) Otherwise, v[0] = v = v[1].
Lemma Il: B represents the function f iff v|0] and v|1] represent the

functions f]0] and f[1], respectively.
Proof: Easy.

27

§ummavx\4{

P fOT (2 xn) = £ (ome =)

.F<x1 - XV\
\ O R AT)

fl £0) wwmque asbabn o}

_F: (1»(1/\1[(_03) Vv ("1/‘1(9])

Theorem: Let F be a nonempty set of boolean functions of arity n
and let z;, < ... < x; be avariable order. There is exactly one
multiBDD that follows this order and represents F.

Proof: We consider the order 1 < 29 < ... < x,,, for other orders
the proof is similar. Proof by induction on the arity n.

Basis: n = 0. There are exactly two boolean functions with n = 0,
namely the constants 0 and 1, and two BDDs Ky, K; consisting of
one single node labelled by 0 or by 1. The set {0} is represented by
Ko, the set {1} by K;, and the set {0,1} by the multiBDD

consisting of Kqg and Kj.

28

Step: n > 0. Let F ={f1,..., fr}.
Define 7' = { f1(0], f1[1], ..., fx[O], fx[1]}, where f;|0] and f;[1] are

as in Lemma |.

By induction hypothesis there is exactly one multiBDD B’ with roots

V10, V11, - - - » Uko, Uk1 representing F'. l.e., for every function f;|j] the
root v;; represents f;|j].

29

Let B be the multiBDD with roots v, ... v, obtained from B’ after
executing the following steps for v = 1,2, ..., k:
o If Vio — U1 then set U; -— Ujp.
(In this case v;q represents f;.)

e If v,0 # v;; and B’ has a node v such with v;y as 0-child and v;;
as 1-child then set v; := v.

e If v,0 # v;1 and B’ contains no such node then add a new node
v; having v,y as 0-Kind and v;; as 1-Kind .
(So v; represents f;, see Lemma Il.)

Clearly, B represents F. We now show that B is the only multiBDD
representing F.

30

Let B be an arbitrary multiBDD with roots @y, . .. 9, representing F.
By Lemma Il, B contains nodes ©;[0], 71[1], . .., 0[0], Tx[1]
representing the functions of F’.

By induction hypothesis, the multiBDD containing these nodes and
all its descendants is the multiBDD B’. In particular, we have
vi; = ;[j] for every i € {1,...,k} and j € {0, 1}.

Let v; and ¥; be the roots of B and B, representing f;. By Lemmas |
und I, v;o and ©;|0] represent f|0], and v;; and ©;|1] represent f[1].
Since v;|0] = 9;|0] and v;[1] = ©;{1] we get v; = ;.

So B and B are equal.

31

N

o)

G
NN

4 Olr&u ML,ZU-
Gm N (' an well °
reprmh

(av\ foure olles wede
W (- o el
No'. Becamat

- ’“AQ wodes Uo , U}y

reprts-wi' *‘wtl\"& ’FO (4
o fywg
_(: :(-1><|/\{0) v (x3 A,{,,)
- o My reprosent [{o) L11)

U-o (' an well

7 P 2

Fcﬂ - "f,\/«e nodes U

S epresemt)f‘“**"‘:‘
401 gfa\\n{\ng ¢ ’F" (4
_(::(‘IX
|/\£0) Vv (X1 A,{)
1

- % %&g
eprenent [(0) (1)

(

-
Wugare\j'
O,U-l-

Computing BDDs from Formulas

Goal: Given a formula F' over the atomic formulas A;,..., A, and a
variable order for {x1,...,x,}, compute a BDD representing
fF(CEl, c . ,CEn).

Naive procedure: Compute the decision tree of fr and reduce it using
the compression rules.

Problem: The decision tree is too large!

Better procedure (idea): Compute recursively the multiBDD
representing { fria, /0], [Fia,/11} for a suitable A;, and derive from it

the BDD for fr, where F'|A;/0] bzw. F'|A;/0] are the formulas
obtained by replacing every occurrence of A; by O resp. by 1.

In the next slides we formalize this idea.

32

Tl

= (A\\/ A‘)_\/\ A}

Let S = {F},..., F,} be a nonempty set of formulas.

We define a procedure multiBDD(S) that returns the roots of a
multiBDD representing the set {fr,,..., fr, }.

K denotes the BDD with only one node labelled by 0.
K; denotes the BDD with only one node labelled by 1.

A proper formula is a formula containing at least one occurrence of a
variable (i.e., not only 0 and 1).

An atomic formula A; is smaller than A, if ; appears before z; in
the variable order.

33

The function multiBDD(S)

if S contains no proper formulas
then if all formulas of S are equivalent to 0
then return {Kgy}
else if all formulas in S are equivalent to 1
then return {K;}
else return {Ky, K}
else choose a proper formula F' € S.
Let A; be the smallest atomic formula occurring in F'.
Let B = multiBDD((S \ {F'}) U{F|A;/0], F|A;/1]}).
Let vy, v; be the roots of B representing ['|A; /0], F'|A;/1].
if v = v; then return B
else add a new node v with vy, v; as 0- and 1-child
(if such a node does not exist yet);
return (B \ {vg,v1}) U {v}

34

Equivalence problems

Given two formulas F}, F5, the following algorithm decides whether
Fy = F5 holds:

e Choose a suitable variable order z; < ... < z,,.
e Compute a multiBDD for {F}, F5}.

e (Check whether the roots vg, , v, are equal.

For digital circuits: the BDDs are not derived from formulas, but
directly from the circuits.

35

Operations on BDDs

Given:
e two formulas F, G over the atomic formulas A4, ..., A,,
e a variable order for {x,...,z,},

e a multiBDD with two roots vp, v representing the functions
fr(zy,...,x,) and fr(xq,...,2,), and

e a binary boolean operation (e.g. V, A, —, <)

Goal: compute a BDD for the function frog(x1,...,25).

With our convention we have fr.c = fro fa

36

ldea

Lemma: (fro fc)[0] = fp|0]o fc|0] and (fro fe)[1] = fr(l]o fall].

Proof: Exercise.

Algorithm: (for the order x1 < x5 < ... < x,, similar for others)

e Compute a multiBDD for {f#|0] o f&|0], fr|1] o fa[1]}.
(Recursively.)

e Use the Lemma to build a BDD for frog(x1,...,xy,).

37

The function Or(vy, vg)

if vy = K1 or vp = K4 then return K,
else if vr = vo = K then return K
else let vpg, vge be the O-children of vg, vg and
let vp1, v be the 1-children of v, vg
vo = Or(vgg, vgo); v1 := Or(vey, va)
if v9 = v; then return v,
else add a new node v with vy, v; as 0- and 1-child
(if such a node does not exist yet);
return v

38

Source:

Implementing BDDs

An introduction to Binary Decision Diagrams

Prof. H.R. Andersen
http: //www.itu.dk /people/hra/notes-index.html

39

Data structures

BDD-nodes coded as numbers 0,1,2,... with 0, 1 for the end nodes.

BDD-nodes are stored in a table
T:uw— (1,1, h)

where 7, [, h are the label, the 0-child and the 1-child of w.
(Here [stands for “low" and h for “high".)

We maintain a second table
H:(i,l,h) — u
so that following invarinat holds:

T(u) = (i,l,h) iff H(i,l,h)=u

40

Basic operations on 1"

init(T): Initializes T" with 0 and 1
add(T, 7,1, h): Adds node with attributes (i,[,h) to T

and returns it

var(u), low(u), high(u): Returns the variable, O-child, 1-child of u

Basic operations on H:
init(H):

member(H, 1,1, h):
lookup(H,i,l,h):
insert(H, i1, h,u):

Initializes H as the empty table

Checks whether (i, [, h) belongs to H
Returns the node H(i,1, h)

Adds (7,1, h) — u to H (if not yet there)

41

The function Make(i, [, h)

Look in H for a node with atributes (¢,1, h). If found, then return it.
Otherwise create a new node and return it.

Make(i,1, h)

if [=h then return |

else if member(H,i,l,h) then
return lookup(H,,h,l)

else u :=add(T,1,1,h)
insert(H, i1, h,u)
return u

SRy

42

Implementing Or

Problem: the function can be called many times with the same

arguments.

Solution: dynamic programming. The results of all calls are stored.
Each call checks first if the result has already been computed earlier.

Or(uy, us)
1: init G
2. return Or'(uy, us)

43

Or'(uq,us)

o & b H

e o XN

if G(ui,u92) # empty then return G(ui,us)
elseif u; =1 or uys =1 then return 1
else if v1 =0 and wuy =0 then return 0
else if wvar(u;) =wvar(uz) then
u = Make(var(uy), Or' (low(uy), low(us)),
Or'(high(uz), high(uz)))
else if wvar(u;) <wvar(uz) then
u = Make(var(uy), Or'(low(uy), us2), Or'(high(u), us))
else u := Make(var(us), Or'(uy, low(us)), Or'(u1, high(us)))
G(ui,u2) =u

10: return u

	Binary Decision Diagrams
	Graphs
	Boolean Functions
	Formulas and boolean functions
	sum as binary decision tree
	Variable order
	Binary decision trees
	Binary Decision Diagrams (informally)
	Example: sharing of subtrees
	Example: sharing of subtrees
	Example: sharing of subtrees
	Example: sharing of subtrees
	Example: removing redundant nodes
	Example: removing redundant nodes
	Formal Definition of BDDs
	MultiBDDs
	Remarks
	Relevance of variable orders
	Canonicity of BDDs
	The functions $f[0]$ und $f[1]$
	Computing BDDs from Formulas
	The function $mbox {multiBDD}({cal S})$
	Equivalence problems
	Operations on BDDs
	Idea
	The function $mbox {Or}(v_F, v_G)$
	Implementing BDDs
	Data structures
	The function $Make(i,l,h)$
	Implementing Or

