Syntax of propositional logic

An atomic formula has the form A_{i} where $i=1,2,3, \ldots$.
Formulas are defined by the following inductive process:

1. All atomic formulas are formulas
2. For every formula $F, \neg F$ is a formula.
3. For all formulas F und $G,(F \wedge G)$ and $(F \vee G)$ are formulas.

For $(F \wedge G)$ we say F and G, conjunction of F and G
For $(F \vee G)$ we say F or G, disjunction of F and G
For $\neg F$ we say not F, negation of F

Syntax tree of a formula

Every formula can be represented by a syntax tree.
Example: $F=\neg\left(\left(\neg A_{4} \vee A_{1}\right) \wedge A_{3}\right)$

Subformulas

The subformulas of a formula are the formulas corresponding to the subtrees of its syntax tree.

$\left(\left(\neg A_{4} \vee A_{1}\right) \wedge A_{3}\right)$

$\neg\left(\left(\neg A_{4} \vee A_{1}\right) \wedge A_{3}\right)$

Semantics of propositional logic (I)

The elements of the set $\{0,1\}$ are called truth values.
An assignment is a function $\mathcal{A}: D \rightarrow\{0,1\}$, where D is any subset of the atomic formulas.

We extend \mathcal{A} to a function $\hat{\mathcal{A}}: E \rightarrow\{0,1\}$, where $E \supseteq D$ is the set of formulas that can be built up using only the atomic formulas from D.

Semantics of propositional logic (II)

$$
\begin{aligned}
& \hat{\mathcal{A}}(A)=\mathcal{A}(A) \\
& \text { if } A \in D \text { is an atomic formula } \\
& \hat{\mathcal{A}}((F \wedge G))= \begin{cases}1 & \text { if } \hat{\mathcal{A}}(F)=1 \text { and } \hat{\mathcal{A}}(G)=1 \\
0 & \text { otherwise }\end{cases} \\
& \hat{\mathcal{A}}((F \vee G))= \begin{cases}1 & \text { if } \hat{\mathcal{A}}(F)=1 \text { or } \hat{\mathcal{A}}(G)=1 \\
0 & \text { otherwise }\end{cases} \\
& \hat{\mathcal{A}}(\neg F)= \begin{cases}1 & \text { if } \hat{\mathcal{A}}(F)=0 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

We write \mathcal{A} instead of $\hat{\mathcal{A}}$.

Truth tables (I)

We can compute $\hat{\mathcal{A}}$ with the help of truth tables.
Observe: $\hat{\mathcal{A}}(F)$ depends only on the definition of \mathcal{A} on the atomic formulas that occur in F.

Tables for the operators \vee, \wedge, \neg :

A	B	A	\vee	B
0	0	0	0	0
0	1	0	1	1
1	0	1	1	0
1	1	1	1	1

A	B	A	\wedge	B
0	0	0	0	0
0	1	0	0	1
1	0	1	0	0
1	1	1	1	1

A	$\boxed{ }$	A
0	1	0
1		0
	1	

Abbreviations

$$
\begin{array}{lll}
A, B, C, \\
P, Q, R, \text { or } \ldots & \text { for } & A_{1}, A_{2}, A_{3} \ldots \\
\left(F_{1} \rightarrow F_{2}\right) & \text { for } & \left(\neg F_{1} \vee F_{2}\right) \\
\left(F_{1} \leftrightarrow F_{2}\right) & \text { for } & \left(\left(F_{1} \wedge F_{2}\right) \vee\left(\neg F_{1} \wedge \neg F_{2}\right)\right) \\
\left(\bigvee_{i=1}^{n} F_{i}\right) & \text { for } & \left(\ldots\left(\left(F_{1} \vee F_{2}\right) \vee F_{3}\right) \vee \ldots \vee F_{n}\right) \\
\left(\bigwedge_{i=1}^{n} F_{i}\right) & \text { for } & \left(\ldots\left(\left(F_{1} \wedge F_{2}\right) \wedge F_{3}\right) \wedge \ldots \wedge F_{n}\right)
\end{array}
$$

\top or true or 1 for $\left(A_{1} \vee \neg A_{1}\right)$
\perp or false or 0 for $\left(A_{1} \wedge \neg A_{1}\right)$

Truth tables (II)

Tables for the operators \rightarrow, \leftrightarrow :

A	B	A	\rightarrow	B
0	0	0	1	0
0	1	0	1	1
1	0	1	0	0
1	1	1	1	1

Name: implication
Interpretation: If A holds, then B holds.

A	B	A	\leftrightarrow	B
0	0	0	1	0
0	1	0	0	1
1	0	1	0	0
1	1	1	1	1

Name: equivalence
Interpretation: A holds if and only if B holds.

Beware!!!

$A \rightarrow B$ does not say, that A is a cause of B.
"Pinguins swim \rightarrow Horses neigh" is true (in our world).
$A \rightarrow B$ does not say anything about the truth value of A.
"Ms. Merkel is a criminal \rightarrow Ms. Merkel should go to prison" is true (in our world).

A false statement implies anything.
"Pinguins fly \rightarrow Mr. Obama is a criminal" is true (in our world).

Formalizing natural language (I)

A device consists of two parts A and B, and a red light. We know that:

- A or B (or both) are broken.
- If A is broken, then B is broken.
- If B is broken and the red light is on, then A is not broken.
- The red light is on.

We use the atomic formulas: $R L$ (red light on), $A B$ (A is broken), $B B$ (B is broken), and formalize this situation by means of the formula

$$
((A B \vee B B) \wedge(A B \rightarrow B B)) \wedge((B B \wedge R O) \rightarrow \neg A B)) \wedge R O
$$

Formalizing natural language (II)

Full truth table:

			$((A B \vee B B) \wedge(A B \rightarrow B B)) \wedge$
$R O$	$A B$	$B B$	$((B B \wedge R O) \rightarrow \neg A B)) \wedge R O$
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	0

Formalizing natural language (III)

Formalize the Sudoku problem:

4				9				2
		1				5		
	9		3	4	5		1	
		8				2	5	
7		5		3		4	6	1
	4	6				9		8
	6		1	5	9		8	
		9				6		
5				7				4

An atomic formula $X_{Y Z}$ for each triple $(X, Y, Z) \in\{1, \ldots, 9\}^{3}$:
$X_{Y Z}=$ the square at row Y and column Z contains the number X

Example: The first row contains all digits from 1 to 9

$$
\bigwedge_{X=1}^{9}\left(\bigvee_{Z=1}^{9} X_{1 Z}\right)
$$

The truth table has

$$
\begin{aligned}
2^{729}= & 282401395870821749694910884220462786335135391185 \\
& 157752468340193086269383036119849990587392099522 \\
& 999697089786549828399657812329686587839094762655 \\
& 308848694610643079609148271612057263207249270352 \\
& 7723757359478834530365734912
\end{aligned}
$$

rows.

Models

Let F be a formula and let \mathcal{A} be an assignment. \mathcal{A} is suitable for F if it is defined for every atomic formula A_{i} occurring in F.

Let \mathcal{A} be suitable for F :

$$
\begin{array}{lll}
\text { If } \mathcal{A}(F)=1 & \text { then we write } & \mathcal{A} \models F \\
& \text { and say } & F \text { holds under } \mathcal{A} \\
& \text { or } & \mathcal{A} \text { is a model of } F
\end{array}
$$

If $\mathcal{A}(F)=0 \quad$ then we write $\mathcal{A} \not \models F$
and say $\quad F$ does not hold under \mathcal{A}
or $\quad \mathcal{A}$ is not a model of F

Validity and satisfiability

Validity: A formula F is valid (or a tautology if every suitable assignment for F is a model of F. We write $\models F$ if F is valid, and $\neq F$ otherwise.

Satisfiability: A formula F is satisfiable if it has at least one model, otherwise F is unsatisfiable.
A (finite or infinite!) set of formulas S is satisfiable if there is an assigment that is a model of every formula in S.

Exercise

	Valid	Satisfiable	Unsatisfiable
A			
$A \vee B$			
$A \vee \neg A$			
$A \wedge \neg A$			
$A \rightarrow \neg A$			
$A \rightarrow B$			
$A \rightarrow(B \rightarrow A)$			
$A \rightarrow(A \rightarrow B)$			
$A \leftrightarrow \neg A$			

Exercise

Which of the following statements are true?

			J / N	C.ex.
If	F is valid,	then F is satisfiable		
If	F is satisfiable,	then $\neg F$ is satisfiable		
If	F is valid,	then $\neg F$ is satisfiable		
If	F is unsatisfiable,	dann $\neg F$ is valid		

Mirroring principle

Consequence

A formula G is a consequence or follows from the formulas F_{1}, \ldots, F_{k} if every model \mathcal{A} of F_{1}, \ldots, F_{k} that is suitable for G is also a model of G

If G is a consequence of F_{1}, \ldots, F_{k} then we write $F_{1}, \ldots, F_{k} \models G$.

Consequence: example

$$
\begin{aligned}
& (A B \vee B B),(A B \rightarrow B B), \\
& ((B B \wedge R O) \rightarrow \neg A B), R O \quad \vDash((R O \wedge \neg A B) \wedge B B)
\end{aligned}
$$

Exercise

M	F	$M \models F ?$
A	$A \vee B$	
A	$A \wedge B$	
A, B	$A \vee B$	
A, B	$A \wedge B$	
$A \wedge B$	A	
$A \vee B$	A	
$A, A \rightarrow B$	B	

Consequence, validity, satisfiability

The following assertions are equivalent:

1. $F_{1}, \ldots, F_{k} \models G$, e.g. , G is a consequence of F_{1}, \ldots, F_{k}.
2. $\left(\left(\bigwedge_{i=1}^{k} F_{i}\right) \rightarrow G\right)$ is valid.
3. $\left(\left(\bigwedge_{i=1}^{k} F_{i}\right) \wedge \neg G\right)$ is unsatisfiable.

Exercise

Let S be a set of formulas, and let F and G be formulas. Which of the following assertions hold?

	Y / N
If F satisfiable then $S \models F$.	
If F valid then $S \models F$.	
If $F \in S$ then $S \models F$.	
If $S \models F$ then $S \cup\{G\} \models F$.	
$S \models F$ and $S \models \neg F$ cannot hold simultaneously.	
If $S \models G \rightarrow F$ and $S \models G$ then $S \models F$.	

