Syntax of propositional logic

An atomic formula has the form A_i where i = 1, 2, 3, ...Formulas are defined by the following inductive process:

- 1. All atomic formulas are formulas
- 2. For every formula F, $\neg F$ is a formula.
- 3. For all formulas F und G, $(F \land G)$ and $(F \lor G)$ are formulas.

For $(F \wedge G)$ we say F and G, conjunction of F and G

- For $(F \lor G)$ we say F or G, disjunction of F and G
 - For $\neg F$ we say not F, negation of F

Every formula can be represented by a syntax tree.

Example: $F = \neg((\neg A_4 \lor A_1) \land A_3)$

Subformulas

The subformulas of a formula are the formulas corresponding to the subtrees of its syntax tree.

Semantics of propositional logic (I)

The elements of the set $\{0,1\}$ are called truth values.

An assignment is a function $\mathcal{A}: D \to \{0, 1\}$, where D is any subset of the atomic formulas.

We extend \mathcal{A} to a function $\hat{\mathcal{A}}: E \to \{0, 1\}$, where $E \supseteq D$ is the set of formulas that can be built up using only the atomic formulas from D.

$$\begin{aligned} \hat{\mathcal{A}}(A) &= \mathcal{A}(A) & \text{if } A \in D \text{ is an atomic formula} \\ \hat{\mathcal{A}}((F \wedge G)) &= \begin{cases} 1 & \text{if } \hat{\mathcal{A}}(F) = 1 \text{ and } \hat{\mathcal{A}}(G) = 1 \\ 0 & \text{otherwise} \end{cases} \\ \hat{\mathcal{A}}((F \vee G)) &= \begin{cases} 1 & \text{if } \hat{\mathcal{A}}(F) = 1 \text{ or } \hat{\mathcal{A}}(G) = 1 \\ 0 & \text{otherwise} \end{cases} \\ \hat{\mathcal{A}}(\neg F) &= \begin{cases} 1 & \text{if } \hat{\mathcal{A}}(F) = 0 \\ 0 & \text{otherwise} \end{cases} \end{aligned}$$

We write \mathcal{A} instead of $\hat{\mathcal{A}}$.

Abbreviations

We can compute $\hat{\mathcal{A}}$ with the help of truth tables.

Observe: $\hat{\mathcal{A}}(F)$ depends only on the definition of \mathcal{A} on the atomic formulas that occur in F.

Tables for the operators \lor , \land , \neg :

A	B	A	V	B	A	B	A	\wedge	B		A	-	A
0	0	0	0	0	0	0	0	0	0	-	0	1	0
0	1	0	1	1	0	1	0	0	1		1	0	1
1	0	1	1	0	1	0	1	0	0				
1	1	1	1	1	1	1	1	1	1				

Truth tables (II)

Tables for the operators \rightarrow , \leftrightarrow :

A	B	A	\rightarrow	B
0	0	0	1	0
0	1	0	1	1
1	0	1	0	0
1	1	1	1	1

Name: implication

Interpretation: If A holds, then B holds.

Name: equivalence

Interpretation: A holds if and only if B holds.

8

 $\begin{array}{rcl} A,B,C,\\ P,Q,R, \, \mathrm{or} \, \dots & \mathrm{for} \quad A_1,A_2,A_3\dots\\ & & (F_1 \rightarrow F_2) \quad \mathrm{for} \quad (\neg F_1 \lor F_2) \\ & (F_1 \leftrightarrow F_2) \quad \mathrm{for} \quad ((F_1 \land F_2) \lor (\neg F_1 \land \neg F_2)) \\ & (\bigvee_{i=1}^n F_i) \quad \mathrm{for} \quad (\dots ((F_1 \lor F_2) \lor F_3) \lor \dots \lor F_n) \\ & & (\bigwedge_{i=1}^n F_i) \quad \mathrm{for} \quad (\dots ((F_1 \land F_2) \land F_3) \land \dots \land F_n) \\ & & \top \ \mathrm{or} \ \mathrm{true} \ \mathrm{or} \ 1 \quad \mathrm{for} \quad (A_1 \lor \neg A_1) \\ & \perp \ \mathrm{or} \ \mathrm{false} \ \mathrm{or} \ 0 \quad \mathrm{for} \quad (A_1 \land \neg A_1) \end{array}$

Beware!!!

 $A \rightarrow B$ does not say, that A is a cause of B.

"Pinguins swim \rightarrow Horses neigh" is true (in our world).

- $A \rightarrow B$ does not say anything about the truth value of A.
 - "Ms. Merkel is a criminal \rightarrow Ms. Merkel should go to prison" is true (in our world).
- A false statement implies anything.

"Pinguins fly \rightarrow Mr. Obama is a criminal" is true (in our world).

A device consists of two parts A and B, and a red light. We know that:

- A or B (or both) are broken.
- If A is broken, then B is broken.
- If B is broken and the red light is on, then A is not broken.
- The red light is on.

We use the atomic formulas: RL (red light on), AB (A is broken), BB (B is broken), and formalize this situation by means of the formula

 $((AB \lor BB) \land (AB \to BB)) \land ((BB \land RO) \to \neg AB)) \land RO$

Formalizing natural language (II)

Full truth table:

			$\left \left((AB \lor BB) \land (AB \to BB) \right) \land \right.$
RO	AB	BB	$((BB \land \underline{RO}) \to \neg AB)) \land \underline{RO}$
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	0

Formalizing natural language (III)

Formalize the Sudoku problem:

4				9				2
		1				5		
	9		3	4	5		1	
		8				2	5	
7		5		3		4	6	1
	4	6				9		8
	6		1	5	9		8	
		9				6		
5				7				4

An atomic formula X_{YZ} for each triple $(X, Y, Z) \in \{1, \dots, 9\}^3$: X_{YZ} = the square at row Y and column Z contains the number X

4 9 2

g

Models

Example: The first row contains all digits from 1 to 9

$$\bigwedge_{X=1}^{9} \left(\bigvee_{Z=1}^{9} X_{1Z}\right)$$

The truth table has

 $2^{729} = 282401395870821749694910884220462786335135391185$ 157752468340193086269383036119849990587392099522 999697089786549828399657812329686587839094762655 308848694610643079609148271612057263207249270352 7723757359478834530365734912

rows.

Validity and satisfiability

Validity: A formula F is valid (or a tautology if *every* suitable assignment for F is a model of F. We write $\models F$ if F is valid, and $\not\models F$ otherwise.

Satisfiability: A formula F is satisfiable if it has at least one model, otherwise F is unsatisfiable.

A (finite or infinite!) set of formulas S is satisfiable if there is an assigment that is a model of every formula in S.

Let F be a formula and let \mathcal{A} be an assignment. \mathcal{A} is suitable for F if it is defined for every atomic formula A_i occurring in F.

Let \mathcal{A} be suitable for F:

If $\mathcal{A}(F) = 1$ then we write $\mathcal{A} \models F$ and say F holds under \mathcal{A} or \mathcal{A} is a model of F

If $\mathcal{A}(F) = 0$	then we write	$\mathcal{A} \not\models F$
	and say	F does not hold under ${\cal A}$
	or	${\cal A}$ is not a model of F

Exercise

	Valid	Satisfiable	Unsatisfiable
A			
$A \lor B$			
$A \vee \neg A$			
$A \wedge \neg A$			
$A \to \neg A$			
$A \to B$			
$A \to (B \to A)$			
$A \to (A \to B)$			
$A \leftrightarrow \neg A$			

16

14

Exercise

Mirroring principle

Which of the following statements are true?

				J/N	C.ex.
lf	F is valid,	then	F is satisfiable		
lf	F is satisfiable,	then	$\neg F$ is satisfiable		
lf	F is valid,	then	$\neg F$ is satisfiable		
lf	F is unsatisfiable,	dann	$\neg F$ is valid		

valid formulas	satisfiable, but not valid formulas	unsatis- fiable formulas
$\neg G$	$F \mid \neg F$	G

17	
Consequence	Consequence: example

A formula G is a consequence or follows from the formulas
F_1,\ldots,F_k if every model $\mathcal A$ of F_1,\ldots,F_k that is suitable for G is
also a model of G

If G is a consequence of F_1, \ldots, F_k then we write $F_1, \ldots, F_k \models G$.

 $(AB \lor BB), (AB \to BB),$ $((BB \land RO) \to \neg AB), RO \models ((RO \land \neg AB) \land BB)$

Exercise

Consequence, validity, satisfiability

М	F	$M \models F$?
A	$A \lor B$	
A	$A \wedge B$	
A, B	$A \vee B$	
A, B	$A \wedge B$	
$A \wedge B$	A	
$A \lor B$	A	
$A, A \to B$	В	

The following assertions are equivalent:

- 1. $F_1, \ldots, F_k \models G$, e.g., G is a consequence of F_1, \ldots, F_k .
- 2. $((\bigwedge_{i=1}^k F_i) \to G)$ is valid.
- 3. $((\bigwedge_{i=1}^k F_i) \land \neg G)$ is unsatisfiable.

Exercise

Let S be a set of formulas, and let F and G be formulas. Which of the following assertions hold?

	Y/N
If F satisfiable then $S \models F$.	
If F valid then $S \models F$.	
If $F \in S$ then $S \models F$.	
If $S \models F$ then $S \cup \{G\} \models F$.	
$S \models F$ and $S \models \neg F$ cannot hold simultaneously.	
If $S \models G \rightarrow F$ and $S \models G$ then $S \models F$.	

22