Logic - Endterm 2

Please note: If not stated otherwise, all answers have to be justified.

Exercise 1

Given is the following formula F:

 $(D \lor \neg E) \land (\neg B \lor \neg E \lor C) \land (\neg A \lor B) \land A \land \neg E.$

- (a) Decide whether F is satisfiable or not using the algorithm for Horn formulas discussed in the lecture.
- (b) How many models defined only on A, B, C, D, E does F have?
- (c) How many models does F have?

Exercise 2

For this exercise, we introduce a *restricted Hilbert calculus* in which the set of axioms is restricted to:

Ax1:
$$(\neg F \to \neg G) \to (G \to F)$$

Ax2:
$$F \to (\neg F \to G)$$

(a) Consider the two (erroneous?) derivations below.

For each step, state whether it is correct or not in this restricted Hilbert calculus; if it is correct, explain why.

(b) In each case, give a derivation in this restricted Hilbert calculus of the stated formula under the stated hypotheses:

i) $\{B\} \vdash A \to B$ ii) $\{A, A \to B, B \to C\} \vdash A \to C$

Exercise 3

Let \equiv_s denote equivalence up to satisfiability (equisatisfiability). Show each of the following equivalences: transform the left-hand side step-by-step into the right-hand side. Clearly state in each step, how you transformed the formula and if equivalence or only equisatisfiability holds.

$$\begin{aligned} (a) \quad \forall x \exists y \forall z \exists w (\neg P(a, w) \lor Q(f(x), y)) & \equiv_s \quad \forall x \forall z (\neg P(a, b) \lor Q(f(x), g(x))) \\ (b) \quad \neg Q(z) \lor \neg \exists x R(x, y) \lor \forall x \exists y P(x, g(y, f(x))) & \equiv_s \quad \forall u \forall x (\neg Q(j(u, x)) \lor \neg R(x, i(u)) \lor P(u, g(h(u), f(u)))) \end{aligned}$$

Exercise 4

Use resolution with unification to derive the empty clause from the following first-order formula F in clause normal form:

$$\{ \{\neg P(f(y_1)), Q(y_1, h(z_1, z_1)) \}, \{\neg P(f(f(x_2))), \neg Q(f(x_2), y_2) \}, \\ \{P(f(x_3)), Q(x_3, h(y_3, a)) \}, \{\neg Q(f(y_4), z_4), \neg Q(f(a), h(f(a), y_5)) \} \}$$

In each step, clearly state (i) which variables are renamed before the computation of a most general unificator, (ii) which literals are unified, and (iii) which most general unificator is used for the resolution step.

2P+2P+3P+3P=10P

2P+1P+1P=4P

3P

3P+3P=6P

Exercise 5

Syllogisms have been introduced at the beginning of the lecture as an example of logical inference. In terms of first order logic, a syllogism consists of three formulas F_1, F_2, F_3 – two premises F_1, F_2 , and a conclusion F_3 – where each formula takes the form of one of the following formulas up to renaming the predicate symbols P, Q:

(1)
$$\forall x(P(x) \to Q(x))$$
 (2) $\forall x(P(x) \to \neg Q(x))$ (3) $\exists x(P(x) \land Q(x))$ (4) $\exists x(P(x) \land \neg Q(x))$

A syllogism F_1, F_2, F_3 is valid if $\models (F_1 \land F_2) \rightarrow F_3$; otherwise the syllogism is not valid.

Example: In case of the syllogism "If all men are mortal, and Socrates is a man, then Socrates is mortal" we have

 $F_1 = \forall x(\max(x) \to \operatorname{mortal}(x)), \ F_2 = \exists x(\operatorname{Socrates}(x) \land \max(x))), \ \text{ and } F_3 = \exists x(\operatorname{Socrates}(x) \land \operatorname{mortal}(x))$

In this example, F_1 is of the form (1), while F_2, F_3 are both of form (3).

- (a) Give an example of a syllogism which is not valid. Prove your answer correct.
- (b) Give an example of a syllogism which is valid where (i) $F_1 \wedge F_2$ has to be satisfiable, (iii) F_1, F_2, F_3 have to be pairwise distinct formulas, and (iii) at least one formula of F_1, F_2, F_3 has to be of form (4).

Prove the correctness of your answer using resolution.

(c) Describe an algorithm that, on input a syllogism $(F_1 \wedge F_2) \to F_3$, always terminates and correctly outputs whether the syllogism is valid or not; if it is not valid, your algorithm should also output a suitable structure \mathcal{A} with $\mathcal{A} \not\models (F_1 \wedge F_2) \to F_3$.

Hint: Recall that Gilmore's algorithm terminates if the Herbrand universe is finite.

Exercise 6

For a propositional variable A and a propositional formula F, let F[A/b] denote the propositional formula obtained from F by substituting the boolean value b for each occurrence of A in F – if A does not occur in F at all then F[A/b] = F.

Let F, H be propositional formulas. Assume $\models (H[A/0] \leftrightarrow H[A/1])$ and $\models H \rightarrow F$.

Show that also $\models H \rightarrow (F[A/0] \leftrightarrow F[A/1]).$

Remark: Let \mathcal{A} be an assignment, A a propositional variable, and $b \in \{0, 1\}$. Recall that $\mathcal{A}_{[A/b]}$ is the assignment with $\mathcal{A}_{[A/b]}(A) = b$ and $\mathcal{A}_{[A/b]}(B) = \mathcal{A}(B)$ for any propositional variable B distinct from A.

Start from a satisfying assignment \mathcal{A} of H (i.e. $\mathcal{A}(H) = 1$), and use that $\mathcal{A}_{[A/b]}(G) = \mathcal{A}(G[A/b])$ for every $b \in \{0, 1\}$ and every propositional formula G.

Exercise 7

2P+3P=5P

4P

(a) Let F be a first-order forumla in RPF, and G the formula obtained by Skolemizing F. It was shown in the lecture that any model \mathcal{A} of G is also a model of F.

Show this result explicitly for the special case of $F = \forall x \exists y P(x, y)$ and $G = \forall x P(x, f(x))$.

(b) Show that any satisfiable formula F has an infinite model.

Hint: When exactly does the Herbrand universe D(G) consist of infinitely many elements? For the case that D(G) is finite, recall that, if $\mathcal{A} \models G \land H$, then also $\mathcal{A} \models G$.