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SOLUTION

Logic — Endterm 2

Please note: If not stated otherwise, all answers have to be justified.

Exercise 1 2P+1P+1P=4P

Given is the following formula F*:
(DV=E)A(-BV-EVC)AN(-mAV B)ANANA-E.

(a) Decide whether F is satisfiable or not using the algorithm for Horn formulas discussed in the lecture.
(b) How many models defined only on A, B,C, D, E does F have?

(¢) How many models does F' have?

Solution:

(a) In the first round A is marked being the only clause consisting of a single positive literal; subsequently, B is marked
in the second round, after which the algorithm terminates with the result that A=1,B=1,C =0,D=0,E=01is a
satisfying assignment for F.

(b) Necessarily, A = 1,B = 1, E = 0 which already satisfies all clauses of F. So C;D can be chosen arbitrarily. Hence,
there are four minimal models.

(¢) Infinitely many.

Exercise 2 2P+2P+3P+3P=10P

For this exercise, we introduce a restricted Hilbert calculus in which the set of axioms is restricted to:
Ax1l: (-F - -G) —» (G = F)
Ax2: F — (-F — G)
(a) Consider the two (erroneous?) derivations below.
For each step, state whether it is correct or not in this restricted Hilbert calculus; if it is correct, explain why.
1. {-4A}F-A 1. {A-B}F(A—B)—(-(A— B)— (-A— -B))
i) 2. {-A}F-A— (A— B) ii) 2. {A—-B}FA—>DB
3. {-A}FA—-B 3. {A—-B}+F—=(A— B)—(-A— -B).
(b) In each case, give a derivation in this restricted Hilbert calculus of the stated formula under the stated hypotheses:
i) {B}-FA—B
i) {A,A—-B,B—-C}FA—=C



Solution:
(a) i) 1. Hypothesis

2. Neither an instance of Ax1 or Ax2, nor a hypothesis, nor obtainable from 1. using modus ponens, hence, not
correct in the Hilbert calculus

(3. Modus ponens applied to 1. and 2.)
i) 1. Ax2
2. Hypothesis

3. Modus ponens

BB " (BIrBo (BooA) ¢
b) i) (BIF-B— A (BIF (B—-A4) = (A=B)

A— B

ii) Let ' = {4,A — B,B — C}.

rr4a' TrAa>B

TFB TFBC
recC 'kEC— (-C — —A)

'--C—-4 'k (-C—-4)—=(A—=0C)
r-A—=c=C

Ax1

Ax2

Exercise 3 3P+3P=6P

Let =, denote equivalence up to satisfiability (equisatisfiability). Show each of the following equivalences: transform the
left-hand side step-by-step into the right-hand side. Clearly state in each step, how you transformed the formula
and if equivalence or only equisatisfiability holds.

(a) VaIyVz3w(=P(a, w) Vv Q(f(x),y)) =s VaVz(=P(a,b) vV Q(f(x), 9(x)))
(0) =Q(2) v -3xR(z,y) VVa3yP(z, g(y, [(2))) =5 YuVz(=Q(j(u,x)) V ~R(z,i(u)) V P(u, g(h(u), f(u))))

Solution:
(a) Va3yVz3w(=Pla,w) vV Q(f(2),y))
=  FJw-P(a,w) VVrIyQ(f(z),y) (Scope)
= FwVzIy(=P(e,w) vV Q(f(2),y)) (Scope)
=, Vz(-P(a,b) vV Q(f(z),g(x))) (Skolemize: Jw — b, VzIy — g(z))

—~
=
~

=Q(z) vV ~JzR(z,y) vV VaIyP(z, g(y, f(2)))
=Q(z) VVanR(z,y) vV VaIyP(z, g(y, f(2)))
—Q(z) VVz-R(z,y) VVuIvP(u, g(v, f(u)))
J2-Q(2) V IyVax-R(x, y) \/VuﬂvP(u g(v, f(u)))
VuvIyVa3z(Q(z) V ~R(z,y) V P(u, g(v, f(u))))

VuvVz(=Q(j(u, ) V ~R(z,i(u)) V P(u, g(h(u), f(u))))

(=32 F =Va-F)

(Renaming of bound variables: © — u, y — v)
(Binding of free variables)
(
(

w

Scope)
Skolemize: v — h(u), y — i(u), z = j(u, x))

»

Exercise 4 3P

Use resolution with unification to derive the empty clause from the following first-order formula F' in clause normal form:

{ {-P(f(41)), Qy1, h(z1, 21)) }, {=P(f(f(22))), ~Q(f(22),y2)},
{P(f(23)), Qws, hlys, )}, {~Q(f(ya),24), ~Q(f(a), h(f(a),y5))} }

In each step, clearly state (i) which variables are renamed before the computation of a most general unificator, (i) which
literals are unified, and (iii) which most general unificator is used for the resolution step.



Solution:

(a) Ky ={=P(f(y1)), Qy1,h(z1,21))}, Ko = {=P(f(f(22))), ~Q(f(x2), y2)}-
As the set of variables occurring in K; is disjoint from that of Ks, we do not need to rename variables.
Unifying {Q(y1, h(z1, 21)), Q(f(x2),y2)} from left to right yields:
1/ f(@2)], ly2/h(z1, 21)].
Resolvent: K5 = {-P(f(f(z2)))}

(b) K3 ={P(f(23)), Qw3, h(ys, a))}, Ko = {=Q(f(ya), z1), ~Q(f(a), h(f(a), y5))}
Again, no need to rename variables as the two sets are disjoint.
Unifying {Q(z3, h(ys,a)), Q(f(ya), 24), Q(f(a), h(f(a),ys))} from left to right leads to:
[z3/f(ya)], [ya/al, [24/(ys, @), lys/ f ()], [ys/al
Resolvent: K¢ = {P(f(f(a)))}.

(¢) Ks = {=P(/(f(w2))}, Ks = {P(F(F(a))}.
Again, no need to rename any variables.
Unifying {P(f(f(x2))), P(f(f(a)))} leads obviously to [z2/a].
Resolvent: [J.

Exercise 5 2P+3P+3P=8P

Syllogisms have been introduced at the beginning of the lecture as an example of logical inference. In terms of first order
logic, a syllogism consists of three formulas I, Fy, F3 — two premises F, F5, and a conclusion F3 — where each formula takes
the form of one of the following formulas up to renaming the predicate symbols P, Q:

(1) Va(P(z) = Qz)) (2) Va(P(z) = —-Q(x)) ) F(P2)AQ(z)) (4) 3z(P(x)A-Q(x)).

A syllogism Fy, Fy, F3 is valid if | (F} A Fy) — F3; otherwise the syllogism is not valid.

Example: In case of the syllogism “If all men are mortal, and Socrates is a man, then Socrates is mortal” we have
Fy = Vz(man(x) — mortal(z)), Fp = Jz(Socrates(x) A man(z))), and F3 = Jz(Socrates(xz) A mortal(x))

In this example, F} is of the form (1), while Fy, F3 are both of form (3).
(a) Give an example of a syllogism which is not valid. Prove your answer correct.

(b) Give an example of a syllogism which is valid where (i) F; A F» has to be satisfiable, (iii) F7, Fs, F3 have to be pairwise
distinct formulas, and (iii) at least one formula of F, Fs, F3 has to be of form (4).

Prove the correctness of your answer using resolution.

(¢) Describe an algorithm that, on input a syllogism (Fy A F») — F3, always terminates and correctly outputs whether
the syllogism is valid or not; if it is not valid, your algorithm should also output a suitable structure A with
A |7é (Fl /\Fg) — F3.

Hint: Recall that Gilmore’s algorithm terminates if the Herbrand universe is finite.

Solution:
(a) Let Fy = Fy = 3x(A(z) A —B(x)), F3 = Va(A(z) — B(x)), Ua = {a}, A* = {a}, BA = 0.
Then A = Fy A Fp but A = (Fy A Fy) — Fs.
So, the syllogism is not valid.
(b) Let Fy =V(A(z) — B(x)), Fo = Jy(A(y) A =C(y)), and F5 = 3z(B(2) A ~C(2)).
Then the so defined syllogism is valid iff G = F; A F5 A —F3 is unsatisfiable. We have

G yVavz((-A(z) V B(x)) A A(y) A =C(y) A (=B(2) V C(2)))
s VavVz((mA(z) vV B(z)) A A(a) A —=C(a) A (=B(z) V C(z2))

{ {~A(z), B(x)}, {A(a)}, {~C(a)}, {=B(2),C(2)} }

Ground resolution yields:



Res({-A(z), B(z)},{A(a)}) = {B(a)}
Res({B(a)},{~B(2),C(2)}) = {C(a)}.
Res({C(a)}, {~C(a)}) = 0.

(¢) Every formula F; has no free variables. We therefore may assume that all formulas have disjoint sets of variables.
Hence, we can always find for (G = F; A Fy) — F3 an equivalent formula H in RPF with H = 3*V*H*. Hence,
Skolemizing H to a formula S does not introduce a function symbol. Thus, D(S) is finite and Gilmore’s algorithm
terminates and correctly decides whether H is unsatisfiable or not, i.e. whether the syllogism is valid or not. If H is

satisfiable (i.e. the syllogism is not valid), we can simply enumerate the finite number of suitable Herbrand structures
for H until we find a model for H, i.e. an counterexample for the syllogism.

Exercise 6 4P
For a propositional variable A and a propositional formula F, let F[A/b] denote the propositional formula obtained from F'
by substituting the boolean value b for each occurrence of A in F' —if A does not occur in F' at all then F[A/b] = F.

Let F, H be propositional formulas. Assume = (H[A/0] +» H[A/1]) and = H — F.

Show that also = H — (F[A/0] <> F[A/1]).

Remark: Let A be an assignment, A a propositional variable, and b € {0,1}. Recall that Apayp is the assignment with
Apasp(A) = b and Apa/y(B) = A(B) for any propositional variable B distinct from A.

Start from a satisfying assignment A of H (i.e. A(H) = 1), and use that A4, (G) = A(G[A/b]) for every b € {0,1} and
every propositional formula G.

Solution: Let A= H otherwise trivially A = H — (F[A/0] + F[A/1]).

Let a:= A(A) and a:=1—a.

As = (H[A/0] + H[A/1]) we have A(H[A/a]) = A(H[A/a)).

Note that A(H[A/b]) = Ajas(H) for b € {0,1}.

Hence:

1= A(H) = Agsyug () = A(H[A/a)) = ACH[A/a]) = Ay (H).

As = H — F we have both 1 = Aj4/q)(F) = A(F[A/a]) and 1 = Aj4/q(F) = A(F[A/a]).
So, A(F[A/a] +» F[A/a]) = 1.

Exercise 7 2P+3P=5P
(a) Let F be a first-order forumla in RPF, and G the formula obtained by Skolemizing F'. It was shown in the lecture
that any model A of G is also a model of F.
Show this result explicitly for the special case of F = Vz3yP(z,y) and G = VzP(z, f(x)).
(b) Show that any satisfiable formula F' has an infinite model.

Hint: When exactly does the Herbrand universe D(G) consist of infinitely many elements? For the case that D(G) is
finite, recall that, if A = G A H, then also A = G.

Solution:
(a) Let A= G.
Then for every d € U4 we have (d, fA(d)) € PA,
i.e. for all d € Ua we have Aj,.—q .4y F P(z,9),
i.e. for all d € Uy we have Ap,.—q = JyP(z,y),
ie. A VzIyP(z,y).



(b) As for every formula of first-order logic we can construct an equivalent one in RPF, we may assume that F is already
in RPF.

Let G be the Skolemization of F. If G contains a function symbol, then D(G) is infinite. As F is satisfiable, so is G;
hence, there exists a Herbrand model for G and, thus, for F’ with an infinite universe.

Thus, assume G does not contain a function symbol. Let G = Vz;...Vz,G*, and P, f symbols not occurring in G.
Consider then H = VyVz, ... Vo, (G* A P(f(y))) = GAYyP(f(y)).

As P, f do not occur in F,G, the formula H is still satisfiable: simply extend any model A of G to a model of H by
PA=U4 and fA the identity over Uy.

As H is satisfiable and contains a function symbol, it has an infinite model, which is also a model of G and, thus, also
a model of F.



