Logic - Homework 10

Discussed on .

Exercise 10.1

Eight Queens Problem

$5 \mathrm{P}+2 \mathrm{P}=7 \mathrm{P}$
The queen as a chess figure is a allowed to move arbitrary long moves in either vertical, horizontal or diagonal direction. The Eight Queens Problem then is as follows: On a normal chess-board with 8×8 fields, one wants to place eight queens in such a way, that it is not possible for any of these queens to attack another.
Below we present two different solutions:

(a) Create a propositional formula F that expresses the following statements:
i) $F_{1} \widehat{=}$ "in each row there is at least one queen"
ii) $F_{2} \widehat{=}$ "in each row there is at most one queen"
iii) $F_{3} \widehat{=}$ "in each column there is at most one queen"
iv) $F_{4} \widehat{=}$ "in each diagonal from top-left to bottom-right (NW-diagonal), there is at most one queen"
v) $F_{5} \widehat{=}$ "in each diagonal from bottom-left to top-right (NE-diagonal), there is at most one queen"

Use the variables $x_{i j}, 1 \leq i, j \leq 8$ to state, that there is a queen at row i and col j.
Together these statements form the formula $F:=F_{1} \wedge F_{2} \wedge F_{3} \wedge F_{4} \wedge F_{5}$, which describes all possible solutions, i.e. an assignment to F is a model iff the variables set to 1 are a solution to the eight queens problem.

Note: Two fields (i, j) and $\left(i^{\prime}, j^{\prime}\right)$ are contained in the same NW-diagonal, iff $i+j=i^{\prime}+j^{\prime}$. Similarly, they are contained in the same NE-diagonal, iff $i-j=i^{\prime}-j^{\prime}$.
(b) The two boards presented above correlate via a horizontal axis-symmetry. This means, that if the one board is reflected along a horizontal axis through the center of the board (as sketched in the right picture), one receives the other one. It can be seen easily, that one board is a solution iff its mirrored counterpart is a solution.

Describe how the formula F needs to be altered, such that if two solutions are correlated via horizontal symmetry, then only one of them is a model of F.

Exercise 10.2 BDDs

$2 \mathrm{P}+2 \mathrm{P}+3 \mathrm{P}=7 \mathrm{P}$
(a) Recall the definition of the $i f$-then-else operator ite:

$$
\operatorname{ite}(F, G, H) \equiv(F \wedge G) \vee(\neg F \wedge H)
$$

Show how to express $F \rightarrow G$ using only ite, F, G, and the constants 0 and 1 (representing false and true, respectively).
(b) W.r.t. the variable order $v<w<x<y<z$ construct the BDDs representing these two formulas

$$
F_{1}=\neg z \vee(v \wedge w) \text { and } F_{2}=(x \vee \neg z) \wedge(\neg x \vee \neg y)
$$

(c) Construct the BDD for the formula $F=F_{1} \vee F_{2}$. How many different assignments exist for F ?
(a) Apply the DPLL-algorithm on the following formula F, that is give a maximal derivation for F.

Is F satisfiable? If yes, give a satisfying assignment.

$$
F=\{\{\neg A, D\},\{A, \neg B\},\{\neg A, \neg D, \neg B\},\{B, C\},\{\neg A, B, \neg C, \neg D\},\{A, D\}\}
$$

(b) Recall the subsumption rule: If a formula F contains two clauses C, C^{\prime} with $C \subseteq C^{\prime}$, then remove C^{\prime} from F.

Find a formula F that has the property, that there exists a derivation from F where the subsumption rule can be used, but there does not exist a derivation where it is used in the first step.

Exercise 10.4 Unsatisfiability

$4 \mathrm{P}+4 \mathrm{P}=8 \mathrm{P}$

Let F be a propositional formula, which contains a variable A, and let $G:=F[A / 0] \wedge F[A / 1]$, where $F[A / b]$ describes the formula, where every occurrence of A is replaced by b.
(a) Prove that $G \wedge \neg F$ is unsatisfiable.
(b) Let H be another formula, that does not contain the variable A. Then assume, that $H \wedge \neg F$ is unsatisfiable. Show that this implies, that $H \wedge \neg G$ is unsatisfiable.

Notes: Show in (a), that for each assignment \mathcal{A} it holds that $\mathcal{A}(G \wedge \neg F)=0$ by doing a case-destinction for $\mathcal{A}(A)=0$ and $\overline{\mathcal{A}(A)}=1$. In (b) you can use (without proof), that for each formula F^{\prime} it holds that, F^{\prime} is unsatisfiable iff both $F^{\prime}[A / 0]$ and $F^{\prime}[A / 1]$ are unsatisfiable.

Exercise 10.5 Predicate Logic

$2 P+4 P=6 P$
(a) The following two formulas are given:
i) $F_{1}=\forall x(P(x) \vee R(x)) \rightarrow(\forall x P(x) \wedge \forall x R(x))$
ii) $F_{2}=\forall x(P(x) \rightarrow Q(x)) \rightarrow \exists y(Q(y) \rightarrow P(y))$

For each of these formulas state (if possible) a structure that satisfies the formula and one that does not.
(b) Let $F=\neg \exists x(P(x) \rightarrow \forall y P(y))$.

Conduct the following tasks on F :
i) Transform F into a formula G in Skolem form such that in G only nullary function symbols occur.
ii) Enumerate all Herbrand structures of G and decide for each of them whether it is a model of G or not.
iii) State if by the results of (b) it follows that F is valid/satisfiable/unsatisfiable.

Exercise 10.6 Resolution

$2 \mathrm{P}+3 \mathrm{P}+2 \mathrm{P}=7 \mathrm{P}$
Before a match of the national team of Germany, Jogi Löw announces the tactics and the current atmosphere in the team:

- Each forward (German: Stürmer) is in the starting lineup.
- No player in the starting lineup dislikes any other player in the starting lineup.
- Each player dislikes someone from the team.

A journalist concludes that each forward dislikes some non-forward. Is this correct?
(a) Formalize the statements of Jogi Löw as a formula F in predicate logic and the statement of the journalist as a formula J. Use the following predicates:

$$
F w(x): x \text { is a forward } S t(x): x \text { is in the starting lineup } D l(x, y): x \text { dislikes } y
$$

(b) Transform the formula $F \wedge \neg J$ into an equisatisfiable (i.e. only equivalent up to satisfiability) formula H in Skolem form. State in each step if it results in a semantically equivalent or only in an equisatisfiable formula.
(c) Use resolution on H to derive the empty clause. What does this derivation of the empty clause imply for the conclusion of the journalist?

