Solution

Logic - Homework 10

Discussed on

Exercise 10.1 Eight Queens Problem

$5 \mathrm{P}+2 \mathrm{P}=7 \mathrm{P}$

The queen as a chess figure is a allowed to move arbitrary long moves in either vertical, horizontal or diagonal direction. The Eight Queens Problem then is as follows: On a normal chess-board with 8×8 fields, one wants to place eight queens in such a way, that it is not possible for any of these queens to attack another.
Below we present two different solutions:

(a) Create a propositional formula F that expresses the following statements:
i) $F_{1} \widehat{=}$ "in each row there is at least one queen"
ii) $F_{2} \widehat{=}$ "in each row there is at most one queen"
iii) $F_{3} \widehat{=}$ "in each column there is at most one queen"
iv) $F_{4} \widehat{=}$ "in each diagonal from top-left to bottom-right (NW-diagonal), there is at most one queen"
v) $F_{5} \widehat{=}$ "in each diagonal from bottom-left to top-right (NE-diagonal), there is at most one queen"

Use the variables $x_{i j}, 1 \leq i, j \leq 8$ to state, that there is a queen at row i and col j.
Together these statements form the formula $F:=F_{1} \wedge F_{2} \wedge F_{3} \wedge F_{4} \wedge F_{5}$, which describes all possible solutions, i.e. an assignment to F is a model iff the variables set to 1 are a solution to the eight queens problem.

Note: Two fields (i, j) and $\left(i^{\prime}, j^{\prime}\right)$ are contained in the same NW-diagonal, iff $i+j=i^{\prime}+j^{\prime}$. Similarly, they are contained in the same NE-diagonal, iff $i-j=i^{\prime}-j^{\prime}$.
(b) The two boards presented above correlate via a horizontal axis-symmetry. This means, that if the one board is reflected along a horizontal axis through the center of the board (as sketched in the right picture), one receives the other one. It can be seen easily, that one board is a solution iff its mirrored counterpart is a solution.

Describe how the formula F needs to be altered, such that if two solutions are correlated via horizontal symmetry, then only one of them is a model of F.

Solution:

(a) $\quad F_{1}=\bigwedge_{i=1}^{8} \bigvee_{j=1}^{8} x_{i j}$

$$
\begin{aligned}
& F_{2}= \bigwedge_{i=1}^{8} \bigwedge_{j=1}^{7} \bigwedge_{k=j+1}^{8}\left(x_{i j} \rightarrow \neg x_{i k}\right) \\
& F_{3}=\bigwedge_{j=1}^{8} \bigwedge_{i=1}^{7} \bigwedge_{k=i+1}^{8}\left(x_{i j} \rightarrow \neg x_{k j}\right) \\
& F_{4}=\bigwedge_{i=2}^{8} \bigwedge_{j=1}^{7} \min \{i-1,8-j\} \\
& F_{5}= \bigwedge_{i=1}^{7} \bigwedge_{j=1}^{7} \min \{8-i, 8-j\} \\
& \bigwedge_{k=1}\left(x_{i j} \rightarrow \neg x_{i-k, j+k}\right)
\end{aligned}
$$

In F_{4} and F_{5}, we use the index k to iterate over the fields that are located to the right of (i, j); the minimum constraint guarantees, that the indices are in $[1,8]$.
(b) In each column, there is exactly one queen. There are two cases:

- the queen is in the upper half, then it is placed in the lower half on the mirrored board
- the queen is in the lower half, then it is placed in the upper half on the mirrored board

Hence, we can demand, that in the lowest four fields of a row (let's use the first row), there is a queen:

$$
F \wedge\left(x_{11} \vee x_{21} \vee x_{31} \vee x_{41}\right)
$$

Exercise 10.2 BDDs

(a) Recall the definition of the $i f$-then-else operator ite:

$$
\operatorname{ite}(F, G, H) \equiv(F \wedge G) \vee(\neg F \wedge H)
$$

Show how to express $F \rightarrow G$ using only ite, F, G, and the constants 0 and 1 (representing false and true, respectively).
(b) W.r.t. the variable order $v<w<x<y<z$ construct the BDDs representing these two formulas

$$
F_{1}=\neg z \vee(v \wedge w) \text { and } F_{2}=(x \vee \neg z) \wedge(\neg x \vee \neg y)
$$

(c) Construct the BDD for the formula $F=F_{1} \vee F_{2}$. How many different assignments exist for F ?

Solution:

(a) $\operatorname{ite}(F, G, 1)$
(b) Both BDDs presented in a multi-BDDs (the 0-node as been omitted):

(c) The BDD for $F_{1} \vee F_{2}$:

Counting the satisfying assignments:

- Node z has a weight of 1 .
- Node y has a weight of $2 \cdot 1+1=3$,
- Node x has a weight of $3+2 \cdot 1=5$,
- Node w has a weight of $5+8 \cdot 1=13$,
- Node v has a weight of $2 \cdot 5+13=23$.

Hence there are 23 satisfying assignments.

Exercise 10.3 DPLL

(a) Apply the DPLL-algorithm on the following formula F, that is give a maximal derivation for F. Is F satisfiable? If yes, give a satisfying assignment.

$$
F=\{\{\neg A, D\},\{A, \neg B\},\{\neg A, \neg D, \neg B\},\{B, C\},\{\neg A, B, \neg C, \neg D\},\{A, D\}\}
$$

(b) Recall the subsumption rule: If a formula F contains two clauses C, C^{\prime} with $C \subseteq C^{\prime}$, then remove C^{\prime} from F.

Find a formula F that has the property, that there exists a derivation from F where the subsumption rule can be used, but there does not exist a derivation where it is used in the first step.

Solution:

(a) We start with the block $\{F\}$, which unfolded is

$$
\{\{\{\neg A, D\}, \quad\{A, \neg B\}, \quad\{\neg A, \neg D, \neg B\},\{B, C\},\{\neg A, B, \neg C, \neg D\},\{A, D\}\}\}
$$

Applying the splitting rule on A and thereafter applying the one-literal-rule, we receive a block with two formulas, namely on for the case where we assume that A is set to true, and one for the case where $\neg A$ is assumed to be true:

$$
\{\{\{D\},\{\neg D, \neg B\},\{B, C\},\{B, \neg C, \neg D\}\}, \quad\{\{\neg B\},\{B, C\},\{D\}\}\}
$$

On both formulas we can apply the single-literal-rule using D :

$$
\{\{\{\neg B\},\{B, C\},\{B, \neg C\}\}, \quad\{\{\neg B\},\{B, C\}\}\}
$$

Again the single-literal-rule, this time using $\neg B$:

$$
\{\{\{C\},\{\neg C\}\}, \quad\{\{C\}\}\}
$$

And again with C :

$$
\{\{\emptyset\}, \emptyset\}
$$

It is not possible to apply further rules, therefore the derivation is maximal. It is also satisfying as the last block contains the empty formula. Hence the formula is satisfiable. A satisfying assignment is $A=0, B=0, C=1, D=1$, which can be deduced from the steps needed to reach the empty formula.
(b) Let $F=\{\{\neg A\},\{A, C\},\{B, C\}\}$.

No clause is a subset of any other one, hence the subsumption rule cannot be applied. After one uses the single-literalclause using $\neg A$, one gets a block with the formula $\{\{C\},\{B, C\}\}$. And on this block the subsumption rule can finally be applied.

Exercise 10.4 Unsatisfiability

$$
4 \mathrm{P}+4 \mathrm{P}=8 \mathrm{P}
$$

Let F be a propositional formula, which contains a variable A, and let $G:=F[A / 0] \wedge F[A / 1]$, where $F[A / b]$ describes the formula, where every occurrence of A is replaced by b.
(a) Prove that $G \wedge \neg F$ is unsatisfiable.
(b) Let H be another formula, that does not contain the variable A. Then assume, that $H \wedge \neg F$ is unsatisfiable. Show that this implies, that $H \wedge \neg G$ is unsatisfiable.

Notes: Show in (a), that for each assignment \mathcal{A} it holds that $\mathcal{A}(G \wedge \neg F)=0$ by doing a case-destinction for $\mathcal{A}(A)=0$ and $\mathcal{A}(A)=1$. In (b) you can use (without proof), that for each formula F^{\prime} it holds that, F^{\prime} is unsatisfiable iff both $F^{\prime}[A / 0]$ and $F^{\prime}[A / 1]$ are unsatisfiable.

Solution:

(a) Let \mathcal{A} be an arbitrary assignment suitable for $G \wedge \neg F$. Let $b:=\mathcal{A}(A)$ and write $G \wedge \neg F \equiv F[A / 1-b] \wedge(F[A / b] \wedge \neg F)$. We further have $\mathcal{A}(F)=\mathcal{A}(F[A / b])$, and thus $\mathcal{A}(\neg F)=1-\mathcal{A}(F[A / b])$, i.e., $\mathcal{A}(F[A / b] \wedge \neg F)=0$.
(b) It holds:

$$
\begin{aligned}
H \wedge \neg G & \equiv H \wedge \neg(F[A / 0] \wedge F[A / 1]) \\
& \equiv H \wedge(\neg F[A / 0] \vee \neg F[A / 1]) \\
& \equiv(H \wedge \neg F[A / 0]) \vee(H \wedge \neg F[A / 1])
\end{aligned}
$$

As A does not occur in H, the last line is equivalent to:

$$
(H \wedge \neg F)[A / 0] \vee(H \wedge \neg F)[A / 1]=: J
$$

If two formulas are each unsatisfiable, so is their disjunction. Therefore it follows, that if $H \wedge \neg F$ is unsatisfiable, so is J.

Alternatively:

We show that $\models H \rightarrow G$ under the stated assumptions that A does not occur in H, and $\models H \rightarrow F$.
Let \mathcal{A} be any assignment defined on the variables occurring in $H \rightarrow G$.
If $\mathcal{A}(H)=0$, then trivially $\mathcal{A} \models H \rightarrow G$ and we are done. So assume $\mathcal{A}(H)=1$.
At least A does not occur in $H \rightarrow G$, so extend \mathcal{A} to an assignment \mathcal{B} suitable also for F by choosing arbitrary values for those variables occurring only in F so that \mathcal{A} and \mathcal{B} coincide on the variables of $H \rightarrow G$ and $\mathcal{A}(H)=\mathcal{B}(H)$ and $\mathcal{A}(G)=\mathcal{B}(G)$.
As (i) $\mathcal{B}(H)=1$, (ii) \mathcal{B} is suitable for $H \rightarrow F$, (iii) $\models H \rightarrow F$, and (iv) $\mathcal{B}(A)$ was chosen arbitrarily, we conclude $\mathcal{B}(F)=1$ independently of the choice of $\mathcal{B}(A)$.

Hence, $\mathcal{B}(F[A / 1])=\mathcal{B}(F[A / 0])=1$ and $\mathcal{B}(G)=1$. As \mathcal{A} and \mathcal{B} coincide on the variables occurring in G, also $\mathcal{A}(G)=1$ so that $\mathcal{A} \models H \rightarrow G$.
(a) The following two formulas are given:
i) $F_{1}=\forall x(P(x) \vee R(x)) \rightarrow(\forall x P(x) \wedge \forall x R(x))$
ii) $F_{2}=\forall x(P(x) \rightarrow Q(x)) \rightarrow \exists y(Q(y) \rightarrow P(y))$

For each of these formulas state (if possible) a structure that satisfies the formula and one that does not.
(b) Let $F=\neg \exists x(P(x) \rightarrow \forall y P(y))$.

Conduct the following tasks on F :
i) Transform F into a formula G in Skolem form such that in G only nullary function symbols occur.
ii) Enumerate all Herbrand structures of G and decide for each of them whether it is a model of G or not.
iii) State if by the results of (b) it follows that F is valid/satisfiable/unsatisfiable.

Solution:

(a) Model of $F_{1}: U_{\mathcal{A}}=\{1\}, P^{\mathcal{A}}=R^{\mathcal{A}}=\emptyset$

Model of $\neg F_{1}: U_{\mathcal{B}}=\{1\}, \quad P^{\mathcal{B}}=\{1\}, \quad R^{\mathcal{B}}=\emptyset$
Model of $F_{2}: U_{\mathcal{C}}=\{1\}, P^{\mathcal{C}}=Q^{\mathcal{C}}=\emptyset$
Model of $\neg F_{2}: U_{\mathcal{D}}=\{1\}, \quad P^{\mathcal{D}}=\emptyset, \quad Q^{\mathcal{D}}=\{1\}$
(b) i) We will exploit the fact, that x does not occur freely in $\exists y \neg P(y)$ and neither does y in $\forall x P(x)$:

$$
\begin{aligned}
F & \equiv \forall x(P(x) \wedge \exists y \neg P(y)) \\
& \equiv \forall x P(x) \wedge \exists y \neg P(y) \\
& \equiv \exists y \forall x(P(x) \wedge \neg P(y)) \\
& \equiv{ }_{S} \quad \forall x(P(x) \wedge \neg P(a))=: G
\end{aligned}
$$

ii) The Herbrand universe of G is $D(G)=\{a\}$. Therefore G has two Herbrand structures \mathcal{A} and \mathcal{B} where $U_{\mathcal{A}}=$ $U_{\mathcal{B}}=D(G)=\{a\}$, and $P^{\mathcal{A}}=\emptyset$ and $P^{\mathcal{B}}=\{a\}$, respectively.
iii) Both \mathcal{A} and \mathcal{B} are not models of G. From the fundamental theorem of predicate logic it follows that G is unsatisfiable. As $G \equiv_{S} F, F$ is also unsatisfiable.

Exercise 10.6 Resolution

$2 \mathrm{P}+3 \mathrm{P}+2 \mathrm{P}=7 \mathrm{P}$
Before a match of the national team of Germany, Jogi Löw announces the tactics and the current atmosphere in the team:

- Each forward (German: Stürmer) is in the starting lineup.
- No player in the starting lineup dislikes any other player in the starting lineup.
- Each player dislikes someone from the team.

A journalist concludes that each forward dislikes some non-forward. Is this correct?
(a) Formalize the statements of Jogi Löw as a formula F in predicate logic and the statement of the journalist as a formula J. Use the following predicates:

$$
F w(x): x \text { is a forward } S t(x): x \text { is in the starting lineup } D l(x, y): x \text { dislikes } y
$$

(b) Transform the formula $F \wedge \neg J$ into an equisatisfiable (i.e. only equivalent up to satisfiability) formula H in Skolem form. State in each step if it results in a semantically equivalent or only in an equisatisfiable formula.
(c) Use resolution on H to derive the empty clause. What does this derivation of the empty clause imply for the conclusion of the journalist?

Solution:

(a) The statements can be formalized as follows:

$$
\begin{aligned}
F= & \forall x(F w(x) \rightarrow S t(x)) \\
& \wedge \forall x \forall y((S t(x) \wedge S t(y)) \rightarrow \neg D s(x, y)) \\
& \wedge \forall x \exists y D s(x, y) \\
J= & \forall x(F w(x) \rightarrow \exists y(\neg F w(y) \wedge D s(x, y)))
\end{aligned}
$$

Remark: $J_{2}=\forall x \exists y((F w(x) \wedge \neg F w(y)) \rightarrow D s(x, y))$ does not correctly model the statement of the journalist as it is in fact a tautology: Let \mathcal{A} be any suitable structure for J_{2} and choose any $d \in U_{\mathcal{A}}$. We need to show that we can find an $e_{d} \in U_{\mathcal{A}}$ such that $\mathcal{A}_{[x / d]\left[y / e_{d}\right]}=(F w(x) \wedge \neg F w(y)) \rightarrow D s(x, y)$.
If $F w^{\mathcal{A}}=\emptyset$, then we can choose any e as $\mathcal{A}_{[x / d]} \not \vDash F w(x)$; otherwise, we can simply choose $e_{d} \in F w^{\mathcal{A}}$ so that $\mathcal{A}_{[x / d]\left[y / e_{d}\right]} \not \vDash \neg F w(y)$. In both cases, $\mathcal{A}_{[x / d]\left[y / e_{d}\right]} \not \vDash F w(x) \wedge \neg F w(y)$ and thus trivially $\mathcal{A}_{[x / d][y / e]} \vDash(F w(x) \wedge$ $\neg F w(y)) \rightarrow D s(x, y)$.
Note that this also nicely illustrates why you need to move to $\neg J_{2}$ in order to use the fundamental theorem for showing that J_{2} is valid; skolemizing J_{2} would introduce a function symbol which restricts us from freely choosing the e_{d} as done above.

$$
\neg J_{2} \equiv \exists x \forall y(F w(x) \wedge \neg F w(y) \wedge \neg D s(x, y)) \equiv_{s} \forall y(F w(a) \wedge \neg F w(y) \wedge \neg D s(x, y))=: S J_{2}
$$

Now it follows analogously to above and Ex. 10.5 that $S J_{2}$ is unsatisfiable as every Herbrand structure is not a model, and thus J_{2} is valid.
(b)

$$
\begin{aligned}
F \wedge \neg J \equiv & \forall x(F w(x) \rightarrow S t(x)) \\
& \wedge \forall x \forall y((S t(x) \wedge S t(y)) \rightarrow \neg D s(x, y)) \\
& \wedge \forall x \exists u G(x, u) \\
& \wedge \exists v(F w(v) \wedge \forall x(F w(x) \vee \neg D s(v, x))) \\
\equiv & \exists v \forall x \exists u \forall y \\
& ((\neg F w(x) \vee S t(x)) \\
& \wedge(\neg S t(x) \vee \neg S t(y) \vee \neg D s(x, y)) \\
& \wedge D s(x, u) \\
& \wedge(F w(v) \wedge(F w(x) \vee \neg D s(v, x)))) \\
\equiv S_{S} \quad & \forall \forall \forall y \\
& ((\neg F w(x) \vee S t(x)) \\
& \wedge(\neg S t(x) \vee \neg S t(y) \vee \neg D s(x, y)) \\
& \wedge D s(x, f(x)) \\
& \wedge F w(a) \\
& \wedge(F w(x) \vee \neg D s(a, x)))
\end{aligned}
$$

(c) Name the clauses of above formula as follows:

$$
\begin{aligned}
& C_{1}=\{\neg F w(x), S t(x)\} \\
& C_{2}=\{\neg \operatorname{St}(x), \neg \operatorname{St}(y), \neg D s(x, y)\} \\
& C_{3}=\{D s(x, f(x))\} \\
& C_{4}=\{F w(a)\} \\
& C_{5}=\{\neg D s(x, y), F w(x)\}
\end{aligned}
$$

Linear resolution:

$$
\begin{aligned}
& C_{6}=\{S t(a)\}=\left(C_{1}-\{\neg F w(x)\}\right)[][x / a] \cup\left(C_{4}-\{F w(a)\}\right)[][x / a] \\
& C_{7}=\{\neg S t(y), \neg D s(a, y)\}=\left(C_{2}-\{\neg S t(x)\}\right)[][x / a] \cup\left(C_{6}-\{S t(a)\}\right)[][x / a] \\
& C_{8}=\{\neg \operatorname{St}(f(a))\}=\left(C_{3}-\{D s(x, f(x))\}\right)[][x / a][y / f(a)] \cup\left(C_{7}-\{\neg D s(a, y)\}\right)[][x / a][y / f(a)] \\
& C_{9}=\{\neg F w(f(a))\}=\left(C_{1}-\{S t(x)\}\right)[][x / f(a)] \cup\left(C_{8}-\{\neg S t(f(a))\}\right)[][x / f(a)] \\
& C_{10}=\{\neg D s(a, f(a))\}=\left(C_{5}-\{F w(x)\}\right)[][x / f(a)] \cup\left(C_{9}-\{\neg F w(f(a))\}\right)[][x / f(a)] \\
& C_{11}=\square=\left(C_{3}-\{D s(x, f(x))\}\right)[][x / a] \cup\left(C_{10}-\{D s(a, f(a))\}\right)[][x / a]
\end{aligned}
$$

