Logic - Endterm

Please note: If not stated otherwise, all answers have to be justified.

Exercise 1

$2 \mathrm{P}+4 \mathrm{P}=6 \mathrm{P}$
(a) Recall the definition of the if-then-else operator ite:

$$
\operatorname{ite}(F, G, H) \equiv(F \wedge G) \vee(\neg F \wedge H)
$$

Show how to express $A \leftrightarrow \neg B$ using only ite, A, B, and the constants 0 and 1 (representing false and true, respectively). Prove that your formula is equivalent to $A \leftrightarrow \neg B$ using equivalence transformations.
(b) W.r.t. the variable order $x<y<r<c$ construct the BDD representing the following formula:

$$
F=(r \leftrightarrow(x \leftrightarrow \neg y)) \wedge(c \leftrightarrow(x \wedge y)) .
$$

Exercise 2

Skolemize the following formula. In every step, state how the formula was transformed and whether semantic equivalence or only equisatisfiability holds:

$$
F=\neg \exists x \forall y(P(x, y) \wedge \exists x(P(x, x) \rightarrow Q(z)))
$$

Exercise 3

Consider the following formulas where a, b are constants, and $P, E q$ are predicate symbols:

$$
\begin{aligned}
& F_{1}=\forall x \forall y \forall z \forall v((P(x, y, z) \wedge P(x, y, v)) \rightarrow E q(z, v)) \\
& F_{2}=\forall x(P(x, a, x) \wedge P(b, x, x)) \\
& F_{3}=E q(b, a)
\end{aligned}
$$

Show that $G=\left(F_{1} \wedge F_{2}\right) \rightarrow F_{3}$ is valid using resolution.

Remark: State clearly intermediate results so that if you make a mistake you do not lose all points.

Exercise 4

$$
2 \mathrm{P}+1 \mathrm{P}+3 \mathrm{P}=6 \mathrm{P}
$$

(a) Assume F is a satisfiable formula of first-order logic in clause form with an infinite Herbrand universe. Is it true that every model of F has an infinite universe? Prove your answer correct.
(b) Give an example of a satisfiable formula F (w/o equality!, not necessarily in clause form) such that every model of F has an infinite universe.

Remark: You do not have to prove that your formula has the required property.
(c) Skolemize the formula

$$
F=\exists x P(x) \vee \exists y P(y) \vee \forall z P(z)
$$

in three different ways yielding formulas G_{1}, G_{2}, G_{3} such that for the Herbrand universe $D\left(G_{i}\right)$ it holds that
i) $D\left(G_{1}\right)$ consists of exactly one element,
ii) $D\left(G_{2}\right)$ consists of exactly two elements, and
iii) $D\left(G_{3}\right)$ is infinite.

The semantics of the uniqueness quantifier \exists ! x (read: there exists a unique x such that \ldots) is defined as follows:

$$
\begin{aligned}
\mathcal{A} \models \exists!x F \quad \text { if and only if } & \text { there exists } d_{0} \in U_{\mathcal{A}} \text { such that } \mathcal{A}_{\left[x:=d_{0}\right]} \models F \\
& \text { and for all } d \in U_{\mathcal{A}} \text { if } \mathcal{A}_{[x:=d]} \models F, \text { then } d=d_{0} .
\end{aligned}
$$

Prove each of the nonequivalences stated below: That is, for each nonequivalence $Q x \exists!y F \not \equiv \exists!y Q x F$ give a formula F and a structure \mathcal{A} so that \mathcal{A} is suitable for both formulas $Q x \exists!y F$ and $\exists!y Q x F$, but only a model for one of them.
(a) $\forall x \exists!y F \not \equiv \exists!y \forall x F$
(b) $\exists x \exists!y F \not \equiv \exists!y \exists x F$
(c) $\exists!x \exists!y F \not \equiv \exists!y \exists!x F$.

Remark: Try to interpret the formulas as statements on directed graphs.

Exercise 6

For each of the following sets \mathbf{L} of literals compute (from left to right, as in the algorithm discussed in the lecture) a most general unificator sub and the result Lsub of the unification if sub exists; otherwise state why sub does not exists.
(a) $\mathbf{L}=\left\{P\left(g\left(f\left(x_{1}\right), x_{2}\right), f\left(g\left(x_{1}, x_{2}\right)\right)\right), \quad P\left(g\left(y_{1}, f\left(y_{2}\right)\right), f\left(g\left(y_{3}, y_{4}\right)\right)\right)\right\}$.
(b) $\mathbf{L}=\left\{P\left(g\left(x_{1}, f\left(x_{2}\right)\right), f\left(g\left(x_{3}, x_{2}\right)\right)\right), \quad P\left(g\left(y_{1}, f\left(y_{2}\right)\right), f\left(g\left(y_{3}, f\left(y_{2}\right)\right)\right)\right)\right\}$.
(c) $\mathbf{L}=\left\{P\left(g\left(f\left(x_{1}\right), x_{2}\right), f\left(g\left(x_{1}, x_{2}\right)\right)\right), \quad P\left(g\left(y_{1}, y_{3}\right), f\left(y_{5}\right)\right), \quad P\left(g\left(y_{1}, f\left(y_{2}\right)\right), f\left(g\left(y_{3}, y_{4}\right)\right)\right)\right\}$.
(d) $\mathbf{L}=\left\{\neg P\left(g\left(f\left(x_{1}\right), x_{2}\right), f\left(g\left(x_{1}, x_{2}\right)\right)\right), \quad P\left(g\left(y_{1}, y_{3}\right), f\left(y_{5}\right)\right)\right\}$.

Exercise 7

Let $T_{1} \subseteq T_{2}$ be two theories of first-order logic.
Prove or refute each of the following statements:
(a) If T_{2} is decidable, then so is T_{1}.
(b) If T_{2} is complete, then so is T_{1}.
(c) If T_{2} is consistent, then so is T_{1}.

Remark: Only yes/no does not suffice, you have to explain why the statement holds or does not hold.

Exercise 8

Given a set \mathcal{X} of propositional formulas, let $\operatorname{Cn}(\mathcal{X})$ denote the set of consequences of \mathcal{X}, i.e., the set of all propositional formulas F with $\mathcal{X} \models F$.
Let \mathcal{X} be an arbitrary set of propositional formulas, and $\mathcal{Y}=\left\{F_{1}, \ldots, F_{n}\right\}$ a finite set of propositional formulas (not necessarily included in \mathcal{X}) such that $\mathrm{Cn}(\mathcal{X})=\mathrm{Cn}(\mathcal{Y})$.
(a) Prove that there is a finite subset $\mathcal{X}^{\prime} \subseteq \mathcal{X}$ such that $\operatorname{Cn}\left(\mathcal{X}^{\prime}\right)=\operatorname{Cn}(\mathcal{Y})$ using the compactness theorem.
(b) Give an alternative proof for the result of (a) but this time based on the results regarding the Hilbert calculus.

