SOLUTION

Logic – Endterm

Please note: If not stated otherwise, all answers have to be justified.

Exercise 1

2P+4P=6P

 $4\mathbf{P}$

(a) Recall the definition of the *if-then-else* operator ite:

$$\mathsf{ite}(F, G, H) \equiv (F \land G) \lor (\neg F \land H).$$

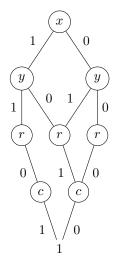
Show how to express $A \leftrightarrow \neg B$ using only ite, A, B, and the constants 0 and 1 (representing false and true, respectively). Prove that your formula is equivalent to $A \leftrightarrow \neg B$ using equivalence transformations.

(b) W.r.t. the variable order x < y < r < c construct the BDD representing the following formula:

$$F = (r \leftrightarrow (x \leftrightarrow \neg y)) \land (c \leftrightarrow (x \land y)).$$

Solution:

- (a) $A \leftrightarrow \neg B \equiv (A \land \neg B) \lor (\neg A \land B) \equiv \mathsf{ite}(A, \neg B, B) \equiv \mathsf{ite}(A, \mathsf{ite}(B, 0, 1), B).$
- (b) Edges to the 0-node have been omitted:



Exercise 2

Skolemize the following formula. In every step, state how the formula was transformed and whether semantic equivalence or only equisatisfiability holds: $E_{n-1} = \sum_{i=1}^{n} \sum_{j=1}^{n} (B(n-j)) + \sum_{i=1}^{n} (B(n-j)) + O(n))$

$$F = \neg \exists x \forall y (P(x, y) \land \exists x (P(x, x) \to Q(z))).$$

 $\begin{array}{rcl} F &=& \neg \exists x \forall y (P(x,y) \land \exists x (P(x,x) \to Q(z))) \\ &\equiv& \forall x \exists y (\neg P(x,y) \lor \forall x (P(x,x) \land \neg Q(z))) \\ &\equiv& \forall x \exists y (\neg P(x,y) \lor \forall u (P(u,u) \land \neg Q(z))) \\ &\equiv& \forall x \exists y \forall u (\neg P(x,y) \lor (P(u,u) \land \neg Q(z))) \\ &\equiv_s & \exists z \forall x \exists y \forall u (\neg P(x,y) \lor (P(u,u) \land \neg Q(z))) \\ &\equiv_s & \forall x \forall u (\neg P(x,f(x)) \lor (P(u,u) \land \neg Q(a))). \end{array}$

Exercise 3

Consider the following formulas where a, b are constants, and P, Eq are predicate symbols:

$$\begin{array}{rcl} F_1 &=& \forall x \forall y \forall z \forall v \; (\; (P(x,y,z) \land P(x,y,v)) \rightarrow Eq(z,v) \;) \\ F_2 &=& \forall x \; (\; P(x,a,x) \land P(b,x,x) \;) \\ F_3 &=& Eq(b,a) \end{array}$$

Show that $G = (F_1 \land F_2) \rightarrow F_3$ is valid using resolution.

Remark: State clearly intermediate results so that if you make a mistake you do not lose all points.

Solution: We prove that $\neg G$ is unsatisfiable. We have $\neg G \equiv F_1 \land F_2 \land \neg F_3$, and so the clauses of $\neg G$ are the union of the clauses of F_1 , F_2 , and $\neg F_3$. Further

$$F_1 \equiv \forall x \forall y \forall z \ (\ \neg P(x, y, z) \lor \neg P(x, y, v) \lor Eq(z, v))$$

and so F_1 has only one clause

$$F_1 \equiv \{\neg P(x, y, z), \neg P(x, y, v), Eq(z, v)\}$$

The clauses for F_2 are

$$F_2 \equiv \{P(w, a, w)\} \{P(b, u, u)\}$$

The clause for $\neg F_3$ is

$$\neg F_3 \equiv \{\neg Eq(b,a)\}$$

Unifying P(x, y, z) and P(w, a, w) yields the clause

 $\{\neg P(w, a, v), Eq(w, v)\}$

Unifying P(b, u, u) and P(w, r, v) yields the clause

 ${Eq(b,a)}$

Resolving with the clause of $\neg F_3$ yields the empty clause.

Exercise 4

(a) Assume F is a satisfiable formula of first-order logic in clause form with an infinite Herbrand universe.

Is it true that every model of F has an infinite universe? Prove your answer correct.

(b) Give an example of a satisfiable formula F (w/o equality!, not necessarily in clause form) such that every model of F has an infinite universe.

Remark: You do not have to prove that your formula has the required property.

(c) Skolemize the formula

$$F = \exists x P(x) \lor \exists y P(y) \lor \forall z P(z)$$

in three different ways yielding formulas G_1, G_2, G_3 such that for the Herbrand universe $D(G_i)$ it holds that

- i) $D(G_1)$ consists of exactly one element,
- ii) $D(G_2)$ consists of exactly two elements, and
- iii) $D(G_3)$ is infinite.

4P

2P+1P+3P=6P

Solution:

- (a) No, as F = P(f(a)) has as Herbrand universe $D(F) = \{a, f(a), f(f(a)), \dots, f^k(a), \dots\}$, but $U_{\mathcal{A}} = \{0\}$ with $f^{\mathcal{A}}(0) = 0$ and $P^{\mathcal{A}} = \{0\}$ is a finite model.
- (b)

$$F = \forall x \forall y \forall z ((\neg \mathsf{Lt}(x, y) \lor \neg \mathsf{Lt}(y, x)) \land (\neg \mathsf{Lt}(x, y) \lor \neg \mathsf{Lt}(y, z) \lor \mathsf{Lt}(x, z)) \land \exists w \mathsf{Lt}(x, w)).$$

renaming y to x	$F \equiv \exists x P(x) \lor \exists x P(x) \lor \forall z P(z)$
idempotence	$\equiv \exists x P(x) \lor \forall z P(z)$
RPF	$\equiv \exists x \forall z (P(x) \lor P(z))$
skolemized	$\equiv_s \forall z (P(a) \lor P(z))$
	$:= F_1$

ii)

$F \equiv \exists x \exists y \forall z (P(x) \lor P(y) \lor P(z))$	RPF
$\equiv_s \forall z (P(a) \lor P(b) \lor P(z))$	skolemized
$:= F_2$	

$$D(F_2) = \{a, b\}$$

 $D(F_1) = \{a\}$

iii)

$$\begin{split} F &\equiv \exists x P(x) \lor \exists x P(x) \lor \forall z P(z) & \text{renaming } y \text{ to } x \\ &\equiv \exists x P(x) \lor \forall z P(z) & \text{idempotence} \\ &\equiv \forall z \exists x (P(x) \lor P(z)) & \text{RPF} \\ &\equiv_s \forall z (P(f(z)) \lor P(z)) & \text{skolemized} \\ &\coloneqq F_3 \end{split}$$

$$D(F_3) = \{a, f(a), f(f(a)), \ldots\}$$

Note that the order of the quantifiers in the RPF is different from i).

Exercise 5

2P+2P+2P=6P

The semantics of the uniqueness quantifier $\exists ! x \text{ (read: there exists a unique } x \text{ such that } \dots \text{)}$ is defined as follows:

$$\mathcal{A} \models \exists ! xF \quad \text{if and only if} \quad \text{there exists } d_0 \in U_{\mathcal{A}} \text{ such that } \mathcal{A}_{[x:=d_0]} \models F \\ \text{and for all } d \in U_{\mathcal{A}} \text{ if } \mathcal{A}_{[x:=d]} \models F, \text{ then } d = d_0.$$

Prove each of the nonequivalences stated below: That is, for each nonequivalence $Qx \exists ! yF \neq \exists ! yQxF$ give a formula F and a structure \mathcal{A} so that \mathcal{A} is suitable for both formulas $Qx \exists ! yF$ and $\exists ! yQxF$, but only a model for one of them.

(a) $\forall x \exists ! y F \neq \exists ! y \forall x F$ (b) $\exists x \exists ! y F \neq \exists ! y \exists x F$ (c) $\exists ! x \exists ! y F \neq \exists ! y \exists ! x F$.

Remark: Try to interpret the formulas as statements on directed graphs.

Solution: Let F = P(x, y) and read P as the edge relation of a directed graph. The structure \mathcal{A} given shall always be a model of the LHS but not of the RHS.

(a) LHS states that every node has a unique successor, while RHS states that there is a unique node which is a successor of every node:

$$U_{\mathcal{A}} = \{a, b\} \quad P^{\mathcal{A}} = \{(a, b), (b, a)\}$$

(b) LHS states that there is some node which has a unique successor, while RHS states that there is a unique node which has a predecessor.

$$U_{\mathcal{A}} = \{a, b\} \quad P^{\mathcal{A}} = \{(a, b), (b, a)\}$$

(c) LHS states that there is a unique node which has a unique successor, while RHS states that there is a unique node which has a unique predecessor.

$$U_{\mathcal{A}} = \{a, b, c\} \quad P^{\mathcal{A}} = \{(a, b), (b, b), (c, c), (b, c)\}$$

Exercise 6

For each of the following sets L of literals compute (from left to right, as in the algorithm discussed in the lecture) a most general unificator sub and the result Lsub of the unification if sub exists; otherwise state why sub does not exists.

(a) $\mathbf{L} = \{ P(g(f(x_1), x_2), f(g(x_1, x_2))), P(g(y_1, f(y_2)), f(g(y_3, y_4))) \}$.

- (b) $\mathbf{L} = \{ P(g(x_1, f(x_2)), f(g(x_3, x_2))), P(g(y_1, f(y_2)), f(g(y_3, f(y_2))))) \}.$
- (c) $\mathbf{L} = \{ P(g(f(x_1), x_2), f(g(x_1, x_2))), P(g(y_1, y_3), f(y_5)), P(g(y_1, f(y_2)), f(g(y_3, y_4))) \} \}.$
- (d) $\mathbf{L} = \{ \neg P(g(f(x_1), x_2), f(g(x_1, x_2))), P(g(y_1, y_3), f(y_5)) \}.$

Solution:

- (a) $\operatorname{sub} = [y_1/f(x_1)][x_2/f(y_2)][y_3/x_1][y_4/f(y_2)]$ Lsub = { $P(g(f(x_1), f(y_2)), f(g(x_1, f(y_2))))$ }
- (b) $[x_1/y_1][x_2/y_2][x_3/y_3]$ then you have to unify $f(y_2)$ with y_2 , which is not possible, as y_2 occurs in $f(y_2)$
- $\begin{array}{l} \text{(c)} \ \, \sup = [y_1/f(x_1)][y_3/f(y_2)][x_2/f(y_2)][y_5/g(x_1,f(y_2))][x_1/f(y_2)][y_4/f(y_2)] \\ \\ \ \, \operatorname{Lsub} = \{P(\ g(f(f(y_2)),f(y_2)),\ f(g(f(y_2),f(y_2)))\)\} \end{array}$
- (d) not unifiable: you cannot unify P and $\neg P$

Exercise 7

Let $T_1 \subseteq T_2$ be two theories of first-order logic.

Prove or refute each of the following statements:

- (a) If T_2 is decidable, then so is T_1 .
- (b) If T_2 is complete, then so is T_1 .
- (c) If T_2 is consistent, then so is T_1 .

Remark: Only yes/no does not suffice, you have to explain why the statement holds or does not hold.

Solution:

- (a) Let F be a formula of arithmetic. Then the theory with axioms $\{F, \neg F\}$ is decidable and a superset of arithmetic, while arithmetic is not decidable.
- (b) Arithmetic is complete, but any subtheory induced by finitely many axioms is not.
- (c) For every formula F either $F \notin T_2$ or $\neg F \notin T_2$. As $T_1 \subseteq T_2$, for any $A \notin T_2$ it necessarily holds that $A \notin T_1$. Therefore T_1 is also consistent.

Exercise 8

2P+2P=4P

1P+1P+1P=3P

7P

Given a set \mathcal{X} of propositional formulas, let $Cn(\mathcal{X})$ denote the set of consequences of \mathcal{X} , i.e., the set of all propositional formulas F with $\mathcal{X} \models F$.

Let \mathcal{X} be an arbitrary set of propositional formulas, and $\mathcal{Y} = \{F_1, \ldots, F_n\}$ a finite set of propositional formulas (not necessarily included in \mathcal{X}) such that $Cn(\mathcal{X}) = Cn(\mathcal{Y})$.

- (a) Prove that there is a finite subset $\mathcal{X}' \subseteq \mathcal{X}$ such that $Cn(\mathcal{X}') = Cn(\mathcal{Y})$ using the compactness theorem.
- (b) Give an alternative proof for the result of (a) but this time **based on the results regarding the Hilbert calculus**.

Solution: (a) For every F_i the set $Cn(\mathcal{X}) \cup \{\neg F_i\}$ is unsatisfiable, and so by the compactness theorem it contains a finite unsatisfiable set $C_i \cup \{\neg F_i\}$. It follows $C_i \models F_i$. So $C_1 \cup \ldots \cup C_n \models F_i$ for every i, and so $C_1 \cup \ldots \cup C_n \models F$ for every $F \in Cn(\mathcal{X})$. Since $C_1 \cup \ldots \cup C_n$ is finite, we are done.

(b) Since $Cn(\mathcal{X}) = Cn(\mathcal{Y})$, all formulas of \mathcal{Y} are consequences of \mathcal{X} , and so derivable from \mathcal{X} by Hilbert calculus. In the derivations the hypothesis rule is only applied to a finite number of formulas of \mathcal{X} ; let \mathcal{X}' be this set. Then from \mathcal{X}' we can derive all formulas of \mathcal{Y} , and so all formulas of $Cn(\mathcal{Y})$, and we are done.