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SOLUTION

Logic – Endterm

Please note : If not stated otherwise, all answers have to be justified.

Exercise 1 2P+4P=6P

(a) Recall the definition of the if-then-else operator ite:

ite(F,G,H) ≡ (F ∧G) ∨ (¬F ∧H).

Show how to express A↔ ¬B using only ite, A, B, and the constants 0 and 1 (representing false and true, respectively).

Prove that your formula is equivalent to A↔ ¬B using equivalence transformations.

(b) W.r.t. the variable order x < y < r < c construct the BDD representing the following formula:

F = (r ↔ (x↔ ¬y)) ∧ (c↔ (x ∧ y)).

Solution:

(a) A↔ ¬B ≡ (A ∧ ¬B) ∨ (¬A ∧B) ≡ ite(A,¬B,B) ≡ ite(A, ite(B, 0, 1), B).

(b) Edges to the 0-node have been omitted:
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Exercise 2 4P

Skolemize the following formula. In every step, state how the formula was transformed and whether semantic equivalence
or only equisatisfiability holds:

F = ¬∃x∀y(P (x, y) ∧ ∃x(P (x, x)→ Q(z))).



Solution:
F = ¬∃x∀y(P (x, y) ∧ ∃x(P (x, x)→ Q(z)))
≡ ∀x∃y(¬P (x, y) ∨ ∀x(P (x, x) ∧ ¬Q(z)))
≡ ∀x∃y(¬P (x, y) ∨ ∀u(P (u, u) ∧ ¬Q(z)))
≡ ∀x∃y∀u(¬P (x, y) ∨ (P (u, u) ∧ ¬Q(z)))
≡s ∃z∀x∃y∀u(¬P (x, y) ∨ (P (u, u) ∧ ¬Q(z)))
≡s ∀x∀u(¬P (x, f(x)) ∨ (P (u, u) ∧ ¬Q(a))).

Exercise 3 4P

Consider the following formulas where a, b are constants, and P,Eq are predicate symbols:

F1 = ∀x∀y∀z∀v ( (P (x, y, z) ∧ P (x, y, v))→ Eq(z, v) )
F2 = ∀x ( P (x, a, x) ∧ P (b, x, x) )
F3 = Eq(b, a)

Show that G = (F1 ∧ F2)→ F3 is valid using resolution.

Remark : State clearly intermediate results so that if you make a mistake you do not lose all points.

Solution: We prove that ¬G is unsatisfiable. We have ¬G ≡ F1 ∧F2 ∧¬F3, and so the clauses of ¬G are the union of the
clauses of F1, F2, and ¬F3. Further

F1 ≡ ∀x∀y∀z ( ¬P (x, y, z) ∨ ¬P (x, y, v) ∨ Eq(z, v) )

and so F1 has only one clause
F1 ≡ {¬P (x, y, z),¬P (x, y, v), Eq(z, v)}

The clauses for F2 are
F2 ≡ {P (w, a,w)} {P (b, u, u)}

The clause for ¬F3 is
¬F3 ≡ {¬Eq(b, a)}

Unifying P (x, y, z) and P (w, a,w) yields the clause

{¬P (w, a, v), Eq(w, v)}

Unifying P (b, u, u) and P (w, r, v) yields the clause
{Eq(b, a)}

Resolving with the clause of ¬F3 yields the empty clause.

Exercise 4 2P+1P+3P=6P

(a) Assume F is a satisfiable formula of first-order logic in clause form with an infinite Herbrand universe.

Is it true that every model of F has an infinite universe? Prove your answer correct.

(b) Give an example of a satisfiable formula F (w/o equality!, not necessarily in clause form) such that every model of F
has an infinite universe.

Remark : You do not have to prove that your formula has the required property.

(c) Skolemize the formula
F = ∃xP (x) ∨ ∃yP (y) ∨ ∀zP (z)

in three different ways yielding formulas G1, G2, G3 such that for the Herbrand universe D(Gi) it holds that

i) D(G1) consists of exactly one element,

ii) D(G2) consists of exactly two elements, and

iii) D(G3) is infinite.



Solution:

(a) No, as F = P (f(a)) has as Herbrand universe D(F ) = {a, f(a), f(f(a)), . . . , fk(a), . . .}, but UA = {0} with fA(0) = 0
and PA = {0} is a finite model.

(b)
F = ∀x∀y∀z((¬Lt(x, y) ∨ ¬Lt(y, x)) ∧ (¬Lt(x, y) ∨ ¬Lt(y, z) ∨ Lt(x, z)) ∧ ∃wLt(x,w)).

(c) i)

F ≡ ∃xP (x) ∨ ∃xP (x) ∨ ∀zP (z) renaming y to x

≡ ∃xP (x) ∨ ∀zP (z) idempotence

≡ ∃x∀z(P (x) ∨ P (z)) RPF

≡s ∀z(P (a) ∨ P (z)) skolemized

:= F1

D(F1) = {a}

ii)

F ≡ ∃x∃y∀z(P (x) ∨ P (y) ∨ P (z)) RPF

≡s ∀z(P (a) ∨ P (b) ∨ P (z)) skolemized

:= F2

D(F2) = {a, b}

iii)

F ≡ ∃xP (x) ∨ ∃xP (x) ∨ ∀zP (z) renaming y to x

≡ ∃xP (x) ∨ ∀zP (z) idempotence

≡ ∀z∃x(P (x) ∨ P (z)) RPF

≡s ∀z(P (f(z)) ∨ P (z)) skolemized

:= F3

D(F3) = {a, f(a), f(f(a)), . . .}

Note that the order of the quantifiers in the RPF is different from i).

Exercise 5 2P+2P+2P=6P

The semantics of the uniqueness quantifier ∃!x (read: there exists a unique x such that . . . ) is defined as follows:

A |= ∃!xF if and only if there exists d0 ∈ UA such that A[x:=d0] |= F
and for all d ∈ UA if A[x:=d] |= F , then d = d0.

Prove each of the nonequivalences stated below: That is, for each nonequivalence Qx∃!yF 6≡ ∃!yQxF give a formula F and
a structure A so that A is suitable for both formulas Qx∃!yF and ∃!yQxF , but only a model for one of them.

(a) ∀x∃!yF 6≡ ∃!y∀xF (b) ∃x∃!yF 6≡ ∃!y∃xF (c) ∃!x∃!yF 6≡ ∃!y∃!xF.

Remark : Try to interpret the formulas as statements on directed graphs.

Solution: Let F = P (x, y) and read P as the edge relation of a directed graph. The structure A given shall always be a
model of the LHS but not of the RHS.

(a) LHS states that every node has a unique successor, while RHS states that there is a unique node which is a successor of
every node:

UA = {a, b} PA = {(a, b), (b, a)}



(b) LHS states that there is some node which has a unique successor, while RHS states that there is a unique node which
has a predecessor.

UA = {a, b} PA = {(a, b), (b, a)}

(c) LHS states that there is a unique node which has a unique successor, while RHS states that there is a unique node which
has a unique predecessor.

UA = {a, b, c} PA = {(a, b), (b, b), (c, c), (b, c)}

Exercise 6 7P

For each of the following sets L of literals compute (from left to right, as in the algorithm discussed in the lecture) a most
general unificator sub and the result Lsub of the unification if sub exists; otherwise state why sub does not exists.

(a) L = {P ( g(f(x1), x2), f(g(x1, x2)) ), P ( g(y1, f(y2)), f(g(y3, y4)) )}.

(b) L = {P ( g(x1, f(x2)), f(g(x3, x2)) ), P ( g(y1, f(y2)), f(g(y3, f(y2))) )}.

(c) L = {P ( g(f(x1), x2), f(g(x1, x2)) ), P ( g(y1, y3), f(y5) ), P ( g(y1, f(y2)), f(g(y3, y4)) )}.

(d) L = {¬P ( g(f(x1), x2), f(g(x1, x2)) ), P ( g(y1, y3), f(y5) )}.

Solution:

(a) sub = [y1/f(x1)][x2/f(y2)][y3/x1][y4/f(y2)] Lsub = {P ( g(f(x1), f(y2)), f(g(x1, f(y2))) )}

(b) [x1/y1][x2/y2][x3/y3] – then you have to unify f(y2) with y2, which is not possible, as y2 occurs in f(y2)

(c) sub = [y1/f(x1)][y3/f(y2)][x2/f(y2)][y5/g(x1, f(y2))][x1/f(y2)][y4/f(y2)]
Lsub = {P ( g(f(f(y2)), f(y2)), f(g(f(y2), f(y2))) )}

(d) not unifiable: you cannot unify P and ¬P

Exercise 7 1P+1P+1P=3P

Let T1 ⊆ T2 be two theories of first-order logic.

Prove or refute each of the following statements:

(a) If T2 is decidable, then so is T1.

(b) If T2 is complete, then so is T1.

(c) If T2 is consistent, then so is T1.

Remark : Only yes/no does not suffice, you have to explain why the statement holds or does not hold.

Solution:

(a) Let F be a formula of arithmetic. Then the theory with axioms {F,¬F} is decidable and a superset of arithmetic,
while arithmetic is not decidable.

(b) Arithmetic is complete, but any subtheory induced by finitely many axioms is not.

(c) For every formula F either F 6∈ T2 or ¬F 6∈ T2. As T1 ⊆ T2, for any A /∈ T2 it necessarily holds that A /∈ T1. Therefore
T1 is also consistent.

Exercise 8 2P+2P=4P

Given a set X of propositional formulas, let Cn(X ) denote the set of consequences of X , i.e., the set of all propositional
formulas F with X |= F .

Let X be an arbitrary set of propositional formulas, and Y = {F1, . . . , Fn} a finite set of propositional formulas (not
necessarily included in X ) such that Cn(X ) = Cn(Y).



(a) Prove that there is a finite subset X ′ ⊆ X such that Cn(X ′) = Cn(Y) using the compactness theorem.

(b) Give an alternative proof for the result of (a) but this time based on the results regarding the Hilbert calculus.

Solution: (a) For every Fi the set Cn(X ) ∪ {¬Fi} is unsatisfiable, and so by the compactness theorem it contains a finite
unsatisfiable set Ci ∪ {¬Fi}. It follows Ci |= Fi. So C1 ∪ . . . ∪ Cn |= Fi for every i, and so C1 ∪ . . . ∪ Cn |= F for every
F ∈ Cn(X ). Since C1 ∪ . . . ∪ Cn is finite, we are done.

(b) Since Cn(X ) = Cn(Y), all formulas of Y are consequences of X , and so derivable from X by Hilbert calculus. In the
derivations the hypothesis rule is only applied to a finite number of formulas of X ; let X ′ be this set. Then from X ′ we can
derive all formulas of Y, and so all formulas of Cn(Y), and we are done.


