

TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK

Einführung in die Informatik II

Univ.-Prof. Dr. Andrey Rybalchenko, M.Sc. Ruslán Ledesma Garza

Dieses Blatt behandelt Kapitel 3.4, 3.6, 3.13, 4.1 und 4.2 aus dem Buch zur Vorlesung. Lesen Sie diese Kapitel!

Aufgabe 3.24

Deklarieren Sie eine Prozedur first : int \rightarrow (int \rightarrow bool) \rightarrow int, die zu x und p die kleinste Zahl $y \ge x$ mit p y = true liefert. Verzichten Sie dabei vollständig auf Typangaben.

Aufgabe 3.25

Geben Sie die Typschemen an, mit denen die Bezeichner ${\tt p}$ und ${\tt q}$ des folgenden Programms typisiert werden.

fun p f
$$(x,y) = f x y$$

fun q f g x = g $(f x)$

Aufgabe 3.26

Geben Sie Deklarationen an, die monomorph getypte Bezeichner wie folgt deklarieren:

- a) int * unit * bool
- b) unit * (int * unit) * (real * unit)
- c) int \rightarrow int
- d) int * bool \rightarrow int
- e) int \rightarrow real
- $f) \hspace{0.1cm} \mathtt{int} \hspace{0.1cm} \rightarrow \hspace{0.1cm} \mathtt{real} \hspace{0.1cm} \rightarrow \hspace{0.1cm} \mathtt{real}$
- g) (int \rightarrow int) \rightarrow bool

Verzichten Sie dabei auf explizite Typangaben und verwenden Sie keine Operator- und Prozeduranwendungen. Hinweis: Für einige der Deklarationen ist die Verwendung eines Konditionals essenti- ell. Die Typregel für Konditionale verlangt, dass die Konsequenz und die Alternative den gleichen Typ haben (siehe § 2.6). Außerdem ist für einige der Deklarationen die Verwen- dung von Tupeln und Projektionen erforderlich, um Werte vergessen zu können, die nur zur Steuerung der Typinferenz konstruiert wurden.

Aufgabe 3.27 **

Im Zusammenhang mit fehlenden Typangaben kann die Verwendung von Projektionen problematisch sein. Beispielsweise kann Typinferenz das Programm fun f x = #1x nicht typisieren. Können Sie erklären, warum das so ist? **Hinweis:** Lesen Sie das Kapitel 2.8.

Aufgabe 3.36 Bitte lessen Sie §3.13. Deklarieren Sie mithilfe der Prozedur iterup eine Prozedur

a) power, die zu x und n die Potenz x^n liefert.

- b) fac, die zu $n \geq 0$ die n-te Fakultät n! liefert.
- c) sum, die zu f und n die Summe $0 + f + 1 + \dots + f + n$ liefert.
- d) iter', die zu n, s und f dasselbe Ergegnis liefert wie iter n s f.

Aufgabe 3.37 Bitte lessen Sie §3.13. Deklarieren Sie mithilfe der Prozedur iter eine Prozedur

- a) iterup', die zu m, n, s und f dasselbe Ergebnis wie iterup m n s f liefert.
- b) iterdn', die zu n, m, s und f dasselbe Ergebnis wie iterdn n m s f liefert.

Aufgabe 4.1 Geben Sie einen Ausdruck an, der die Liste [7, 2, 4] klammerfrei mit Cons und *nil* beschreibt. Geben Sie die Baumdarstellung ihres Ausdrucks an. Unterscheidet sich die Baumdarstellung des Ausdrucks von der Baumdarstellung der Liste?

Aufgabe 4.2 Betrachten Sie den Ausdruck 1::2::nil@3::4::nil.

- a) Geben Sie die Baumdarstellung des Ausdrucks an.
- b) Geben Sie die Baumdarstellung der beschriebenen Liste an.
- c) Geben Sie die beschriebene Liste mit "[...]" an.

Aufgabe 4.3 Macht es für die dargestellten Listen einen Unterschied, wie die folgenden Ausdrücke geklammert sind?

- a) (e1::e2)@e3 oder e1::(e2@e3).
- b) (e1@e2)@e3 oder e1@(e2@e3).
- c) (e1::e2)::e3 oder e1::(e2::e3).

Aufgabe 4.4 (Enum) Schreiben Sie mithilfe der Prozedur iterdn (§3.13) eine Prozedur enum: int \rightarrow int 1 ist, die zu zwei Zahlen $m \le n$ die Liste $[m, \ldots, n]$ liefert. Beispielsweise soll enum 3 6 = [3, 4, 5, 6] gelten. Für m > n soll enum die leere Liste liefern.