Some expanded proofs from the book [1] Feedback is welcome

Andrey Rybalchenko rybal@in.tum.de

TUM

Definition 1. Let X and Y be sets.

$\mathcal{L}(X) = \{nil\} \cup (X \times \mathcal{L}(X))$	lists of elements from X
$ _{-} :\mathcal{L}(X)\to\mathbb{N}$	length
nil = 0	Eq. $ _{-} _{1}$
x :: xr = 1 + xr	Eq. $ _{-} _{2}$
$@: \mathcal{L}(X) \times \mathcal{L}(X) \to \mathcal{L}(X)$	concatenation
nil@ys = ys	Eq. @ ₁
(x::xr) @ys = x:: (xr @ys)	Eq. @ ₂
$rev: \mathcal{L}(X) \to \mathcal{L}(X)$	reversal
$rev \ nil = nil$	Eq. rev_1
$rev \ (x :: xr) = (rev \ xr)@[x]$	Eq. rev_2
$foldl: (X \times Y \to Y) \times Y \times \mathcal{L}(X) \to Y$	folding left
foldl(f, y, nil) = y	Eq. $foldl_1$
foldl(f, y, x :: xr) = foldl(f, f(x, y), xr)	Eq. $foldl_2$

Proposition 1. Concatenation is associative, i.e.,

$$\forall xs \in \mathcal{L}(X) \; \forall ys \in \mathcal{L}(X) \; \forall zs \in \mathcal{L}(X) : (xs@ys)@zs = xs@(ys@zs).$$

Proof. Induction over the structure of the first list above. Induction hypothesis:

$$H(xs) = \forall ys \in \mathcal{L}(X) \ \forall zs \in \mathcal{L}(X) : (xs@ys)@zs = xs@(ys@zs).$$

Base case We prove H(nil), i.e.,

$$\forall ys \in \mathcal{L}(X) \; \forall zs \in \mathcal{L}(X) : (nil@ys)@zs = nil@(ys@zs).$$

Let ys and zs be elements of $\mathcal{L}(X)$. We prove:

$$(nil@ys)@zs = nil@(ys@zs)$$

as follows:

$$(nil@ys)@zs$$

$$= nil@ys \rightarrow ys \qquad by Eq. @_1$$

$$(ys)@zs$$

$$= parenthesis$$

$$(ys@zs)$$

$$= nil@(...) \leftarrow (...) \qquad by Eq. @_1$$

$$nil@(ys@zs).$$

Induction step Let x be an element of X, and let xr be an element of $\mathcal{L}(X)$. Assume H(xr), i.e.,

$$\forall ys \in \mathcal{L}(X) \; \forall zs \in \mathcal{L}(X) : (xr@ys)@zs = xr@(ys@zs).$$

We prove H(x :: xr), i.e.,

$$\forall ys \in \mathcal{L}(X) \; \forall zs \in \mathcal{L}(X) : ((x :: xr)@ys)@zs = (x :: xr)@(ys@zs).$$

Let ys and zs be elements of $\mathcal{L}(X)$. We prove

$$((x :: xr) @ys) @zs = (x :: xr) @(ys @zs)$$

as follows:

$$\begin{array}{lll} & ((x::xr)@ys)@zs \\ = & & (x::xr)@ys \rightarrow x::(xr@ys) & \text{by Eq. } @_2 \\ & (x::(xr@ys))@zs \\ = & & & (x::(\ldots))@zs \rightarrow x::(\ldots)@zs & \text{by Eq. } @_2 \\ & x::(xr@ys)@zs \\ = & & & & & & & \\ & x::((xr@ys)@zs) \\ = & & & & & & & \\ & x::(xr@(ys@zs)). \end{array}$$

Proposition 2. Let $f = \lambda(x, a) \in \mathcal{L}(X) \times \mathbb{N}.a + 1$. The length of a list xs can be computed as fold (f, 0, xs), *i.e.*,

$$\forall xs \in \mathcal{L}(X) : |xs| = foldl(f, 0, xs).$$

Proof. (failed) Induction over the structure of the list. Induction hypothesis:

$$H(xs) = (|xs| = foldl(f, 0, xs)).$$

Base case We prove H(nil), i.e.,

$$|nil| = foldl(f, 0, nil),$$

as follows:

$$\begin{array}{ll} |nil| \\ = & |nil| \rightarrow 0 & \text{by Eq. } |_{-}|_{1} \\ 0 \\ = & foldl(f,0,nil). \end{array}$$

Induction step Let x be an element of X, and let xr be an element of $\mathcal{L}(X)$. Assume H(xr), i.e.,

$$|xr| = foldl(f, 0, xr).$$

We attempt to prove H(x :: xr), i.e.,

$$|x :: xr| = foldl(f, 0, x :: xr)$$

as follows:

$$\begin{aligned} &|x :: xr| \\ = & |x :: xr| \rightarrow 1 + |xr| & \text{by Eq. } |_{-}|_{2} \\ & 1 + |xr| \\ = & |xr| \rightarrow foldl(f, 0, xr) & \text{by } H(xr) \\ & 1 + foldl(f, 0, xr). \end{aligned}$$

Our sequence of proof steps did not reach the goal, while no further useful steps can be applied. We attept to prove

$$1 + foldl(f, 0, xr) = foldl(f, 0, x :: xr)$$

by applying proof steps on foldl(f, 0, x :: xr) as follows:

Our sequence of proof steps did not reach the goal, while no further useful steps can be applied. Our proof attempt is stuck at proving

$$1 + foldl(f, 0, xr) = foldl(f, 1, xr).$$

Proposition 3. Let $f = \lambda(x, a) \in \mathcal{L}(X) \times \mathbb{N}.a + 1$. The length of a list xs and a natural number n are related to fold (f, n, xs) as follows.

$$\forall xs \in \mathcal{L}(X) \; \forall n \in \mathbb{N} : |xs| + n = foldl(f, n, xs).$$

Proof. Induction over the structure of the list. Induction hypothesis:

$$H(xs) = (\forall n \in \mathbb{N} : |xs| + n = foldl(f, n, xs)).$$

Base case We prove H(nil), i.e.,

$$\forall n \in \mathbb{N} : |nil| + n = foldl(f, n, nil).$$

Let n be a natural number. We apply the following steps.

$$\begin{aligned} &|nil|+n \\ = & |nil| \to 0 & \text{by Eq. } |_{-}|_{1} \\ &n \\ = & foldl(f,n,nil). \end{aligned}$$

Induction step Let x be an element of X, and let xr be an element of $\mathcal{L}(X)$. Assume H(xr), i.e.,

 $\forall n \in \mathbb{N} : |xr| + n = foldl(f, n, xr).$

We prove H(x :: xr), i.e.,

$$\forall n \in \mathbb{N} : |x :: xr| + n = foldl(f, n, x :: xr).$$

Let n be a natural number. We apply the following steps.

$$\begin{array}{ll} |x :: xr| + n \\ = & |x :: xr| \rightarrow 1 + |xr| & \text{by Eq. } |_{-}|_{2} \\ 1 + |xr| + n \\ = & \text{by associativity of } + \\ |xr| + (n+1) \\ = & |xr| + (n+1) \rightarrow foldl(f, n+1, xr) & \text{by } H(xr) \\ foldl(f, n+1, xr) \\ = & f(x, n) \leftarrow n+1 & \text{by definition of } f \\ foldl(f, f(x, n), xr) \\ = & foldl(f, n, x :: xr) \leftarrow foldl(f, f(x, n), xr) & \text{by Eq. } foldl_{2} \\ foldl(f, n, x :: xr). \end{array}$$

Proposition 4. Let $f = \lambda(x, xs) \in X \times \mathcal{L}(X).x :: xs$. A list xs can be reversed as foldl(f, nil, xs), i.e., $\forall xs \in \mathcal{L}(X) : rev \ xs = foldl(f, nil, xs).$

Proof. (failed) Induction over the structure of the list. Induction hypothesis:

$$H(xs) = (rev \ xs = foldl(f, nil, xs)).$$

Base case We prove H(nil), i.e.,

$$rev \ nil = foldl(f, nil, nil),$$

as follows:

	rev nil		
=		$rev \ nil \rightarrow nil$	by Eq. rev_1
	nil		
=		$foldl(\dots,nil,nil) \leftarrow nil$	by Eq. $foldl_1$
	foldl(f, nil, nil).		

Induction step Let x be an element of X, and let xr be an element of $\mathcal{L}(X)$. Assume H(xr), i.e.,

$$rev xr = foldl(f, nil, xr).$$

We attempt to prove H(x :: xr), i.e.,

$$rev \ x :: xr = foldl(f, nil, x :: xr)$$

as follows:

$$\begin{array}{ll} rev \; x :: \; xr \\ = & rev \; x :: \; xr \to (rev \; xr)@[x] & \text{by Eq. } rev_2 \\ (rev \; xr)@[x] \\ = & rev \; xr \to foldl(f, nil, xr) & \text{by } H(xr) \\ foldl(f, nil, xr)@[x]. \end{array}$$

Our sequence of proof steps did not reach the goal, while no further useful steps can be applied. We attept to prove

$$foldl(f, nil, xr)@[x] = foldl(f, nil, x :: xr)$$

by applying proof steps on foldl(f, nil, x :: xr) as follows:

$$\begin{aligned} & foldl(f, nil, x :: xr) \\ = & foldl(f, nil, x :: ...) \rightarrow foldl(f, f(x, nil), ...) & \text{by Eq. } foldl_2 \\ & foldl(f, f(x, nil), xr) \\ = & f(x, nil) \rightarrow [x] & \text{by definition of } f \\ & foldl(f, [x], xr). \end{aligned}$$

Our sequence of proof steps did not reach the goal, while no further useful steps can be applied. Our proof attempt is stuck at proving

$$foldl(f, nil, xr)@[x] = foldl(f, [x], xr).$$

Proposition 5. Let $f = \lambda(x, xs) \in X \times \mathcal{L}(X).x :: xs$. The reversal of a list xs and a list ys are related to fold (f, ys, xs) as follows.

$$\forall xs \in \mathcal{L}(X) \; \forall ys \in \mathcal{L}(X) : (rev \; xs) @ys = foldl(f, ys, xs).$$

Proof. Induction over the structure of the list. Induction hypothesis:

$$H(xs) = (\forall ys \in \mathcal{L}(X) : (rev \ xs)@ys = foldl(f, ys, xs)).$$

Base case We prove H(nil), i.e.,

$$\forall ys \in \mathcal{L}(X) : (rev \ nil) @ys = foldl(f, ys, nil).$$

Let ys be an element from $\mathcal{L}(X)$. We apply the following steps.

	$(rev \ nil)@ys$		
=		$rev \ nil \rightarrow nil$	by Eq. rev_1
	nil@ys		
=		$nil@ys \rightarrow ys$	by Eq. $@_1$
	ys		
=		$foldl(\ldots, ys, nil) \leftarrow ys$	by Eq. $foldl_1$
	foldl(f, ys, nil).		

Induction step Let x be an element of X, and let xr be an element of $\mathcal{L}(X)$. Assume H(xr), i.e.,

$$\forall ys \in \mathcal{L}(X) : (rev \ xr) @ys = foldl(f, ys, xr).$$

We prove H(x :: xr), i.e.,

$$\forall ys \in \mathcal{L}(X) : (rev \ (x :: xr)) @ys = foldl(f, ys, x :: xr).$$

Let ys be an element of $\mathcal{L}(X)$. We apply the following steps.

	$(rev \ (x :: xr))@ys$		
=		$rev \ (x :: xr) \to (rev \ xr) @[x]$	by Eq. rev_2
	$((rev \ xr)@[x])@ys$		
=			by associativity of @
	$(rev \ xr)@([x]@ys)$		
=		$(rev \ xr)@\ldots \rightarrow foldl(f,\ldots,xr)$	by $H(xr)$
	foldl(f, [x]@ys, xr)		
=		$x :: nil \leftarrow [x]$	by definition of :: ?
	foldl(f, (x :: nil)@ys, xr)		
=		$(x :: nil) @ys \to x :: (nil @ys)$	by Eq. $@_2$
	foldl(f, x ::: (nil@ys), xr)		
=		$nil@ys \rightarrow ys$	by Eq. $@_1$
	foldl(f, x :: ys, xr)		
=		$f(x, ys) \leftarrow x :: ys$	by definition of f
	foldl(f, f(x, ys), xr)		
=	A 1 11/ A X	$foldl(f, ys, x :: xr) \leftarrow foldl(f, f(x, ys), xr)$	by Eq. $foldl_2$
	foldl(f, ys, x :: xr).		

References

1. Gert Smolka. Programmierung - eine Einführung in die Informatik mit Standard ML. Oldenbourg Wissenschaftsverlag, 2008.