
Some expanded proofs from the book [1]
Feedback is welcome

Andrey Rybalchenko
rybal@in.tum.de

TUM

Definition 1. Let X and Y be sets.

L(X) = {nil} ∪ (X × L(X)) lists of elements from X

| | : L(X)→ IN length

|nil | = 0 Eq. | |1
|x :: xr | = 1 + |xr | Eq. | |2

@ : L(X)× L(X)→ L(X) concatenation

nil@ys = ys Eq. @1

(x :: xr)@ys = x :: (xr@ys) Eq. @2

rev : L(X)→ L(X) reversal

rev nil = nil Eq. rev1

rev (x :: xr) = (rev xr)@[x] Eq. rev2

foldl : (X × Y → Y)× Y × L(X)→ Y folding left

foldl(f, y,nil) = y Eq. foldl1

foldl(f, y, x :: xr) = foldl(f, f(x, y), xr) Eq. foldl2

ut

Proposition 1. Concatenation is associative, i.e.,

∀xs ∈ L(X) ∀ys ∈ L(X) ∀zs ∈ L(X) : (xs@ys)@zs = xs@(ys@zs).

Proof. Induction over the structure of the first list above. Induction hypothesis:

H(xs) = ∀ys ∈ L(X) ∀zs ∈ L(X) : (xs@ys)@zs = xs@(ys@zs).

Base case We prove H(nil), i.e.,

∀ys ∈ L(X) ∀zs ∈ L(X) : (nil@ys)@zs = nil@(ys@zs).

Let ys and zs be elements of L(X). We prove:

(nil@ys)@zs = nil@(ys@zs)

as follows:
(nil@ys)@zs

= nil@ys → ys by Eq. @1

(ys)@zs

= parenthesis

(ys@zs)

= nil@(. . .)← (. . .) by Eq. @1

nil@(ys@zs).

Induction step Let x be an element of X, and let xr be an element of L(X). Assume H(xr), i.e.,

∀ys ∈ L(X) ∀zs ∈ L(X) : (xr@ys)@zs = xr@(ys@zs).

We prove H(x :: xr), i.e.,

∀ys ∈ L(X) ∀zs ∈ L(X) : ((x :: xr)@ys)@zs = (x :: xr)@(ys@zs).

Let ys and zs be elements of L(X). We prove

((x :: xr)@ys)@zs = (x :: xr)@(ys@zs)

as follows:

((x :: xr)@ys)@zs

= (x :: xr)@ys → x :: (xr@ys) by Eq. @2

(x :: (xr@ys))@zs

= (x :: (. . .))@zs → x :: (. . .)@zs by Eq. @2

x :: (xr@ys)@zs

= parenthesis, see Appendix A [1]

x :: ((xr@ys)@zs)

= (xr@ys)@zs → xr@(ys@zs) by instantiation of H(xr)

x :: (xr@(ys@zs)).

ut

Proposition 2. Let f = λ(x, a) ∈ L(X)× IN.a+1. The length of a list xs can be computed as foldl(f, 0, xs),
i.e.,

∀xs ∈ L(X) : |xs| = foldl(f, 0, xs).

Proof. (failed) Induction over the structure of the list. Induction hypothesis:

H(xs) = (|xs| = foldl(f, 0, xs)).

Base case We prove H(nil), i.e.,
|nil | = foldl(f, 0,nil),

as follows:
|nil |

= |nil | → 0 by Eq. | |1
0

= foldl(. . . , 0,nil)← 0 by Eq. foldl1

foldl(f, 0,nil).

2

Induction step Let x be an element of X, and let xr be an element of L(X). Assume H(xr), i.e.,

|xr | = foldl(f, 0, xr).

We attempt to prove H(x :: xr), i.e.,

|x :: xr | = foldl(f, 0, x :: xr)

as follows:
|x :: xr |

= |x :: xr | → 1 + |xr | by Eq. | |2
1 + |xr |

= |xr | → foldl(f, 0, xr) by H(xr)

1 + foldl(f, 0, xr).

Our sequence of proof steps did not reach the goal, while no further useful steps can be applied. We attept
to prove

1 + foldl(f, 0, xr) = foldl(f, 0, x :: xr)

by applying proof steps on foldl(f, 0, x :: xr) as follows:

foldl(f, 0, x :: xr)

= foldl(f, 0, x :: . . .)→ foldl(f, f(x, 0), . . .) by Eq. foldl2

foldl(f, f(x, 0), xr)

= f(x, 0)→ 1 by definition of f

foldl(f, 1, xr).

Our sequence of proof steps did not reach the goal, while no further useful steps can be applied. Our proof
attempt is stuck at proving

1 + foldl(f, 0, xr) = foldl(f, 1, xr).

�

Proposition 3. Let f = λ(x, a) ∈ L(X) × IN.a + 1. The length of a list xs and a natural number n are
related to foldl(f, n, xs) as follows.

∀xs ∈ L(X) ∀n ∈ IN : |xs|+ n = foldl(f, n, xs).

Proof. Induction over the structure of the list. Induction hypothesis:

H(xs) = (∀n ∈ IN : |xs|+ n = foldl(f, n, xs)).

Base case We prove H(nil), i.e.,

∀n ∈ IN : |nil |+ n = foldl(f, n,nil).

Let n be a natural number. We apply the following steps.

|nil |+ n

= |nil | → 0 by Eq. | |1
n

= foldl(. . . , n,nil)← n by Eq. foldl1

foldl(f, n,nil).

3

Induction step Let x be an element of X, and let xr be an element of L(X). Assume H(xr), i.e.,

∀n ∈ IN : |xr |+ n = foldl(f, n, xr).

We prove H(x :: xr), i.e.,
∀n ∈ IN : |x :: xr |+ n = foldl(f, n, x :: xr).

Let n be a natural number. We apply the following steps.

|x :: xr |+ n

= |x :: xr | → 1 + |xr | by Eq. | |2
1 + |xr |+ n

= by associativity of +

|xr |+ (n+ 1)

= |xr |+ (n+ 1)→ foldl(f, n+ 1, xr) by H(xr)

foldl(f, n+ 1, xr)

= f(x, n)← n+ 1 by definition of f

foldl(f, f(x, n), xr)

= foldl(f, n, x :: xr)← foldl(f, f(x, n), xr) by Eq. foldl2

foldl(f, n, x :: xr).

ut

Proposition 4. Let f = λ(x, xs) ∈ X × L(X).x :: xs. A list xs can be reversed as foldl(f,nil , xs), i.e.,

∀xs ∈ L(X) : rev xs = foldl(f,nil , xs).

Proof. (failed) Induction over the structure of the list. Induction hypothesis:

H(xs) = (rev xs = foldl(f,nil , xs)).

Base case We prove H(nil), i.e.,
rev nil = foldl(f,nil ,nil),

as follows:
rev nil

= rev nil → nil by Eq. rev1

nil

= foldl(. . . ,nil ,nil)← nil by Eq. foldl1

foldl(f,nil ,nil).

Induction step Let x be an element of X, and let xr be an element of L(X). Assume H(xr), i.e.,

rev xr = foldl(f,nil , xr).

We attempt to prove H(x :: xr), i.e.,

rev x :: xr = foldl(f,nil , x :: xr)

as follows:

rev x :: xr

= rev x :: xr → (rev xr)@[x] by Eq. rev2

(rev xr)@[x]

= rev xr → foldl(f,nil , xr) by H(xr)

foldl(f,nil , xr)@[x].

4

Our sequence of proof steps did not reach the goal, while no further useful steps can be applied. We attept
to prove

foldl(f,nil , xr)@[x] = foldl(f,nil , x :: xr)

by applying proof steps on foldl(f,nil , x :: xr) as follows:

foldl(f,nil , x :: xr)

= foldl(f,nil , x :: . . .)→ foldl(f, f(x,nil), . . .) by Eq. foldl2

foldl(f, f(x,nil), xr)

= f(x,nil)→ [x] by definition of f

foldl(f, [x], xr).

Our sequence of proof steps did not reach the goal, while no further useful steps can be applied. Our proof
attempt is stuck at proving

foldl(f,nil , xr)@[x] = foldl(f, [x], xr).

�

Proposition 5. Let f = λ(x, xs) ∈ X × L(X).x :: xs. The reversal of a list xs and a list ys are related
to foldl(f, ys, xs) as follows.

∀xs ∈ L(X) ∀ys ∈ L(X) : (rev xs)@ys = foldl(f, ys, xs).

Proof. Induction over the structure of the list. Induction hypothesis:

H(xs) = (∀ys ∈ L(X) : (rev xs)@ys = foldl(f, ys, xs)).

Base case We prove H(nil), i.e.,

∀ys ∈ L(X) : (rev nil)@ys = foldl(f, ys,nil).

Let ys be an element from L(X). We apply the following steps.

(rev nil)@ys

= rev nil → nil by Eq. rev1

nil@ys

= nil@ys → ys by Eq. @1

ys

= foldl(. . . , ys,nil)← ys by Eq. foldl1

foldl(f, ys,nil).

Induction step Let x be an element of X, and let xr be an element of L(X). Assume H(xr), i.e.,

∀ys ∈ L(X) : (rev xr)@ys = foldl(f, ys, xr).

We prove H(x :: xr), i.e.,

∀ys ∈ L(X) : (rev (x :: xr))@ys = foldl(f, ys, x :: xr).

5

Let ys be an element of L(X). We apply the following steps.

(rev (x :: xr))@ys

= rev (x :: xr)→ (rev xr)@[x] by Eq. rev2

((rev xr)@[x])@ys

= by associativity of @

(rev xr)@([x]@ys)

= (rev xr)@ . . .→ foldl(f, . . . , xr) by H(xr)

foldl(f, [x]@ys, xr)

= x :: nil ← [x] by definition of :: ?

foldl(f, (x :: nil)@ys, xr)

= (x :: nil)@ys → x :: (nil@ys) by Eq. @2

foldl(f, x :: (nil@ys), xr)

= nil@ys → ys by Eq. @1

foldl(f, x :: ys, xr)

= f(x, ys)← x :: ys by definition of f

foldl(f, f(x, ys), xr)

= foldl(f, ys, x :: xr)← foldl(f, f(x, ys), xr) by Eq. foldl2

foldl(f, ys, x :: xr).

ut

References

1. Gert Smolka. Programmierung - eine Einführung in die Informatik mit Standard ML. Oldenbourg Wis-
senschaftsverlag, 2008.

6

