Some expanded proofs from the book [1]
Feedback is welcome

Andrey Rybalchenko
rybal@in.tum.de

TUM

Definition 1. Let X and Y be sets.

L(X) = {nil} U (X x L(X))

lists of elements from X

|-]: L(X) >IN length

|nil] =0 Eq. |-|1

|z ar| =1+ |zr| Eq. |-|2

Q: L(X)x L(X) = L(X) concatenation
nilQys = ys Eq. @

(z :: zr)Qys = x :: (2rQys) Eq. @y

rev : L(X) = L(X) reversal

rev nil = nil Eq. revy

rev (x :: ar) = (rev zr)Q[x] Eq. revy

foldl : (X XY = Y)xY xL(X)—=Y

Joldi(f.y, nil) = y
foldl(f,y, @ :: ar) = foldl(f, f(x,y), ar)

Proposition 1. Concatenation is associative, i.e.,

folding left

Eq. foldl,
Eq. foldl,

Vas € L(X) Vys € L(X) Vzs € L(X) : (zsQys)Qzs = 25Q(ysQzs).

Proof. Induction over the structure of the first list above. Induction hypothesis:

H(xs) =Vys € L(X)Vzs € L(X) : (zsQys)Qzs = 15Q(ysQzs).

Base case We prove H(nil), i.e.,

Vys € LX) Vzs € L(X) : (nilQys)Qzs = nilQ(ysQzs).

Let ys and zs be elements of £L(X). We prove:

(nilQys)Qzs = nil@(ysQzs)

as follows:

(nilQys)Qzs

= nilQys — ys by Eq. @
(ys)Qzs

= parenthesis
(ys@zs)

= nil@(...) < (...) by Eq. @
nil@(ysQzs).

Induction step Let x be an element of X, and let zr be an element of £(X). Assume H(zr), i.e.,
Vys € L(X) Vzs € L(X) : (zrQys)Qzs = 2rQ(ysQzs).
We prove H(x :: zr), i.e.,
Vys € LX) Vzs € L(X) : ((x :: 2r)Qys)Qzs = (z :: 2r)Q(ysQzs).
Let ys and zs be elements of £(X). We prove
((x :: 2r)Qys)Qzs = (x :: zr)Q(ysQzs)
as follows:
((z :: zr)Qys)Qzs
= (: 2r)Qys — x :: (zrQys) by Eq. @
(z = (2rQys))Qzs
= (x::(...)Qzs >z (...)Qzs by Eq. Qg
x : (zrQys)@zs
= parenthesis, see Appendix A [1]
z :: ((zrQys)Qzs)
= (zrQys)Qzs — 2r@(ysQzs) by instantiation of H (zr)
x : (zrQ(ysQzs)).
O

Proposition 2. Let f = A(z,a) € L(X) xIN.a+1. The length of a list zs can be computed as foldl(f,0, zs),
i.e.,

Vas € L(X) : |zs| = foldl(f,0, xs).
Proof. (failed) Induction over the structure of the list. Induction hypothesis:
H(zs) = (Jas| = foldl(f,0, zs)).
Base case We prove H(nil), i.e.,
[nil| = foldl(f,0, nil),

as follows:
|nil |

= |nil| — 0 by Eq. |-|1

= foldl(...,0,nil) < 0 by Eq. foldl,
foldl(f,0, nil).

Induction step Let x be an element of X, and let 2r be an element of £(X). Assume H (zr), i.e.,
|zr| = foldl(f,0, zr).
We attempt to prove H(x :: ar), i.e.,
| o xr| = foldl(f,0,z :: ar)
as follows:
| o ar|
= |x :ar| = 14 |zr| by Eq. |_|2
1+ |zr|
= |zr| = foldl(f,0,2r) by H(zr)
1+ foldl(f,0, ar).

Our sequence of proof steps did not reach the goal, while no further useful steps can be applied. We attept
to prove
1+ foldi(f,0,zr) = foldl(f,0,z :: ar)

by applying proof steps on foldl(f,0,x :: ar) as follows:
foldl(f,0,x :: xr)
= foldl(f,0,z ::...) = foldl(f, f(,0),...) by Eq. foldl,
foldl(f, f(x,0), zr)
= f(z,0) =1 by definition of f
foldl(f,1,zr).

Our sequence of proof steps did not reach the goal, while no further useful steps can be applied. Our proof
attempt is stuck at proving

1+ foldl(f,0,2r) = foldl(f,1, zr).
]

Proposition 3. Let f = A(z,a) € L(X) x IN.a+ 1. The length of a list zs and a natural number n are
related to foldl(f,n,xzs) as follows.

Vas € L(X)Vn € IN : |zs| +n = foldl(f,n, zs).
Proof. Induction over the structure of the list. Induction hypothesis:
H(zs) = (VYn € IN: |zs| + n = foldl(f,n,xs)).
Base case We prove H(nil), i.e.,
Vn € IN : |nil| +n = foldl(f,n, nil).
Let n be a natural number. We apply the following steps.
[nil| +n

= |nil] — 0 by Eq. |-]1

= foldl(...,n,nil) < n by Eq. foldl,
foldl(f,n, nil).

Induction step Let x be an element of X, and let 2r be an element of £(X). Assume H (zr), i.e.,
Vn € IN : |zr| + n = foldl(f,n, zr).

We prove H(x :: zr), i.e.,
Vn € IN: |z zr| +n = foldl(f,n,z :: 2r).

Let n be a natural number. We apply the following steps.

|z = ar|+n

= |z zr| = 1+ |ar]| by Eq. |-|2
1+ |zr|+n

= by associativity of +
jar| + (n + 1)

= |zr] + (n+ 1) — foldl(f,n + 1, zr) by H (zr)
foldl(f,n+1,zr)

= flx,n)«n+1 by definition of f

foldI(f, f(x,n), ar)
= foldl(f,n,x :: xr) « foldl(f, f(x,n),zr) by Eq. foldl,
foldl(f,n,x :: ar).

Proposition 4. Let f = Az, zs) € X x L(X).x :: zs. A list xs can be reversed as foldl(f, nil, zs), i.e.,
Vas € L(X) : rev zs = foldl(f, nil, xs).
Proof. (failed) Induction over the structure of the list. Induction hypothesis:
H(zs) = (rev zs = foldl(f, nil, xs)).
Base case We prove H(nil), i.e.,
rev nil = foldl(f, nil, nil),

as follows:
rev nil

= rev nil — nil by Eq. revy
nil

= foldl(...,nil,nil) < nil by Eq. foldl,
foldl(f, nil, nil).

Induction step Let x be an element of X, and let zr be an element of £(X). Assume H(zr), i.e.,
rev zr = foldl(f, nil, zr).
We attempt to prove H(x :: ar), i.e.,
rev x :: xr = foldl(f, nil, x :: zr)
as follows:

rev x i
= rev x :: ar — (rev zr)@Q[z] by Eq. revy
(rev zr)Q[x]
= rev zr — foldl(f, nil,zr) by H(ar)
foldl(f, nil, zr)Qlx].

Our sequence of proof steps did not reach the goal, while no further useful steps can be applied. We attept
to prove

foldl(f, nil, xr)Q[x] = foldl(f, nil,x :: zr)

by applying proof steps on foldl(f, nil,x :: zr) as follows:

foldl(f, nil,x :: ar)

= foldl(f,nil,x 2 ...) — foldl(f, f(z,nil),...) by Eq. foldl,
foldl(f, f(x, nil), zr)

= f(z, nil) — [z] by definition of f
foldl(f, [x], ar).

Our sequence of proof steps did not reach the goal, while no further useful steps can be applied. Our proof
attempt is stuck at proving

foldl(f, nil, xr)Qlx] = foldl(f, [x], zr).

Proposition 5. Let f = A(x,zs) € X x L(X).«x :: xs. The reversal of a list s and a list ys are related
to foldl(f,ys,zs) as follows.

Vas € L(X) Vys € L(X) : (rev xs)Qys = foldl(f, ys, xs).
Proof. Induction over the structure of the list. Induction hypothesis:

H(zs) = (Vys € L(X) : (rev zs)Qys = foldl(f,ys, xs)).

Base case We prove H(nil), i.e.,
Vys € LX) : (rev nil)Qys = foldl(f, ys, nil).
Let ys be an element from £(X). We apply the following steps.

(rev nil)Qys

= rev nil — nil by Eq. revy
nilQys

= nilQys — ys by Eq. @
ys

= foldl(...,ys,nil) < ys by Eq. foldl,
foldl(f,ys, nil).

Induction step Let = be an element of X, and let 2r be an element of £(X). Assume H (zr), i.e.,
Vys € L(X) : (rev zr)Qys = foldl(f, ys, zr).
We prove H(x :: zr), i.e.,

Vys € L(X) : (rev (x :: ar))Qys = foldl(f, ys, x :: xr).

Let ys be an element of £(X). We apply the following steps.

(rev (x :: 27))@ys
((rev zr)@[z])@ys

(rev zr)@([z]Qys)
foldl(f, [x]Qys, ar)
foldl(f, (x :: nil)Qys, ar)
foldl(f,x :: (nil@ys), ar)
foldl(f,x :: ys, ar)
foldl(f, f(x,ys), ar)

foldl(f,ys,x :: zr).

References

rev (x :: ar) — (rev zr)Q[z]

(rev zr)Q... — foldi(f,..., zr)
x nil + [z]

(z :: nil)Qys — x :: (nilQys)
nilQys — ys

P, 9s) x5 ys

foldl(f, ys,x :: xr) < foldl(f, f(x,ys), zr)

by Eq. revs

by associativity of @

by H(xr)

by definition of :: 7

by definition of f

by Eq. foldl,

1. Gert Smolka. Programmierung - eine Einfihrung in die Informatik mit Standard ML. Oldenbourg Wis-

senschaftsverlag, 2008.

