Some expanded proofs from the book [1] Feedback is welcome

Andrey Rybalchenko
rybal@in.tum.de

TUM

Definition 1. Let X and Y be sets.

Proposition 1. Concatenation is associative, i.e.,

$$
\forall x s \in \mathcal{L}(X) \forall y s \in \mathcal{L}(X) \forall z s \in \mathcal{L}(X):(x s @ y s) @ z s=x s @(y s @ z s) .
$$

Proof. Induction over the structure of the first list above. Induction hypothesis:

$$
H(x s)=\forall y s \in \mathcal{L}(X) \forall z s \in \mathcal{L}(X):(x s @ y s) @ z s=x s @(y s @ z s)
$$

Base case We prove $H(n i l)$, i.e.,

$$
\forall y s \in \mathcal{L}(X) \forall z s \in \mathcal{L}(X):(n i l @ y s) @ z s=n i l @(y s @ z s) .
$$

Let $y s$ and $z s$ be elements of $\mathcal{L}(X)$. We prove:

$$
(n i l @ y s) @ z s=n i l @(y s @ z s)
$$

as follows:

$$
\begin{array}{rlr}
& (n i l @ y s) @ z s & \\
= & n i l @ y s \rightarrow y s & \text { by Eq. } @_{1} \\
= & & \text { parenthesis } \\
= & n s) @ z s & \\
& (y s @ z s) & \\
& n i l @(y s @ z s) . &
\end{array}
$$

Induction step Let x be an element of X, and let $x r$ be an element of $\mathcal{L}(X)$. Assume $H(x r)$, i.e.,

$$
\forall y s \in \mathcal{L}(X) \forall z s \in \mathcal{L}(X):(x r @ y s) @ z s=x r @(y s @ z s) .
$$

We prove $H(x:: x r)$, i.e.,

$$
\forall y s \in \mathcal{L}(X) \forall z s \in \mathcal{L}(X):((x:: x r) @ y s) @ z s=(x:: x r) @(y s @ z s) .
$$

Let $y s$ and $z s$ be elements of $\mathcal{L}(X)$. We prove

$$
((x:: x r) @ y s) @ z s=(x:: x r) @(y s @ z s)
$$

as follows:

$$
\begin{aligned}
& \text { ((} x:: x r) @ y s) @ z s \\
& =\quad(x:: x r) @ y s \rightarrow x::(x r @ y s) \quad \text { by Eq. } @_{2} \\
& (x::(x r @ y s)) @ z s \\
& =\quad(x::(\ldots)) @ z s \rightarrow x::(\ldots) @ z s \quad \text { by Eq. } @_{2} \\
& x::(x r @ y s) @ z s \\
& =\quad x::((x r @ y s) @ z s) \\
& =\quad(x r @ y s) @ z s \rightarrow x r @(y s @ z s) \quad \text { by instantiation of } H(x r) \\
& x::(x r @(y s @ z s)) . \\
& \text { x::(x@(ys@zs)). }
\end{aligned}
$$

Proposition 2. Let $f=\lambda(x, a) \in \mathcal{L}(X) \times \mathbb{N} . a+1$. The length of a list $x s$ can be computed as foldl $(f, 0, x s)$, i.e.,

$$
\forall x s \in \mathcal{L}(X):|x s|=\operatorname{foldl}(f, 0, x s)
$$

Proof. (failed) Induction over the structure of the list. Induction hypothesis:

$$
H(x s)=(|x s|=\operatorname{foldl}(f, 0, x s))
$$

Base case We prove $H($ nil $)$, i.e.,

$$
|n i l|=\operatorname{foldl}(f, 0, n i l),
$$

as follows:

$$
\begin{array}{lll}
=\begin{array}{ll}
|n i l| & |n i l| \rightarrow 0
\end{array} \\
= & \text { by Eq. }\left.\left.\right|_{-}\right|_{1} \\
= & \text { foldl }(\ldots, 0, n i l) \leftarrow 0 & \text { by Eq. foldl } l_{1}
\end{array}
$$

Induction step Let x be an element of X, and let $x r$ be an element of $\mathcal{L}(X)$. Assume $H(x r)$, i.e.,

$$
|x r|=\operatorname{foldl}(f, 0, x r) .
$$

We attempt to prove $H(x:: x r)$, i.e.,

$$
|x:: x r|=\operatorname{foldl}(f, 0, x:: x r)
$$

as follows:

$$
\begin{aligned}
& |x:: x r| & & \\
= & & |x:: x r| \rightarrow 1+|x r| & \text { by Eq. }|-|_{2} \\
= & & |x r| \rightarrow \operatorname{foldl}(f, 0, x r) & \text { by } H(x r)
\end{aligned}
$$

Our sequence of proof steps did not reach the goal, while no further useful steps can be applied. We attept to prove

$$
1+\operatorname{foldl}(f, 0, x r)=\operatorname{foldl}(f, 0, x:: x r)
$$

by applying proof steps on $\operatorname{foldl}(f, 0, x:: x r)$ as follows:

$$
\begin{array}{lll}
& \operatorname{foldl}(f, 0, x:: x r) & \\
= & \text { foldl }(f, 0, x:: \ldots) \rightarrow \operatorname{foldl}(f, f(x, 0), \ldots) & \text { by Eq. foldl } l_{2} \\
= & f(x, 0) \rightarrow 1 & \text { by definition of } f, f(x, 0), x r) \\
& \text { foldl }(f, 1, x r) . &
\end{array}
$$

Our sequence of proof steps did not reach the goal, while no further useful steps can be applied. Our proof attempt is stuck at proving

$$
1+\operatorname{foldl}(f, 0, x r)=\operatorname{foldl}(f, 1, x r)
$$

Proposition 3. Let $f=\lambda(x, a) \in \mathcal{L}(X) \times \mathbb{N} \cdot a+1$. The length of a list $x s$ and a natural number n are related to foldl $(f, n, x s)$ as follows.

$$
\forall x s \in \mathcal{L}(X) \forall n \in \mathbb{N}:|x s|+n=\text { foldl }(f, n, x s) .
$$

Proof. Induction over the structure of the list. Induction hypothesis:

$$
H(x s)=(\forall n \in \mathbb{N}:|x s|+n=\operatorname{foldl}(f, n, x s))
$$

Base case We prove $H($ nil $)$, i.e.,

$$
\forall n \in \mathbb{N}:|n i l|+n=\operatorname{foldl}(f, n, n i l)
$$

Let n be a natural number. We apply the following steps.

$$
\begin{array}{lll}
& |n i l|+n & \\
n & |n i l| \rightarrow 0 & \text { by Eq. }\left.\left.\right|_{-}\right|_{1} \\
= & \text { foldl }(\ldots, n, n i l) \leftarrow n & \text { by Eq. } \text { foldl }_{1}
\end{array}
$$

Induction step Let x be an element of X, and let $x r$ be an element of $\mathcal{L}(X)$. Assume $H(x r)$, i.e.,

$$
\forall n \in \mathbb{N}:|x r|+n=\operatorname{foldl}(f, n, x r)
$$

We prove $H(x:: x r)$, i.e.,

$$
\forall n \in \mathbb{N}:|x:: x r|+n=\operatorname{foldl}(f, n, x:: x r) .
$$

Let n be a natural number. We apply the following steps.

$$
\begin{aligned}
& |x:: x r|+n \\
& =\quad|x:: x r| \rightarrow 1+|x r| \quad \text { by Eq. }|-|_{2} \\
& 1+|x r|+n \\
& =\quad \text { by associativity of }+ \\
& |x r|+(n+1) \\
& =\quad|x r|+(n+1) \rightarrow \operatorname{foldl}(f, n+1, x r) \quad \text { by } H(x r) \\
& \text { foldl }(f, n+1, x r) \\
& =\quad f(x, n) \leftarrow n+1 \quad \text { by definition of } f \\
& \text { foldl }(f, f(x, n), x r) \\
& =\quad \text { foldl }(f, n, x:: x r) \leftarrow \operatorname{foldl}(f, f(x, n), x r) \quad \text { by Eq. } \text { foldl }_{2} \\
& \text { foldl }(f, n, x:: x r) .
\end{aligned}
$$

Proposition 4. Let $f=\lambda(x, x s) \in X \times \mathcal{L}(X) . x::$ xs. A list x s can be reversed as foldl $(f$, nil, xs $)$, i.e.,

$$
\forall x s \in \mathcal{L}(X): \text { rev } x s=\text { foldl }(f, \text { nil }, x s) .
$$

Proof. (failed) Induction over the structure of the list. Induction hypothesis:

$$
H(x s)=(\text { rev } x s=\operatorname{foldl}(f, n i l, x s)) .
$$

Base case We prove $H(n i l)$, i.e.,

$$
\text { rev nil }=\operatorname{foldl}(f, n i l, n i l),
$$

as follows:

$$
\begin{array}{lll}
& \text { rev nil } & \text { rev nil } \rightarrow \text { nil }
\end{array} \quad \text { by Eq. } \text { rev }_{1}
$$

Induction step Let x be an element of X, and let $x r$ be an element of $\mathcal{L}(X)$. Assume $H(x r)$, i.e.,

$$
\text { rev } x r=\operatorname{foldl}(f, n i l, x r)
$$

We attempt to prove $H(x:: x r)$, i.e.,

$$
\text { rev } x:: x r=\operatorname{foldl}(f, n i l, x:: x r)
$$

as follows:

$$
\begin{array}{rlr}
& \text { rev } x:: x r & \\
= & \text { rev } x:: x r \rightarrow(\text { rev } x r) @[x] & \text { by Eq. } \text { rev }_{2} \\
= & & \text { rev } x r \rightarrow \text { foldl }(f, n i l, x r)
\end{array} \quad \text { by } H(x r)
$$

Our sequence of proof steps did not reach the goal, while no further useful steps can be applied. We attept to prove

$$
\text { foldl }(f, n i l, x r) @[x]=\operatorname{foldl}(f, n i l, x:: x r)
$$

by applying proof steps on $\operatorname{foldl}(f, n i l, x:: x r)$ as follows:

$$
\begin{array}{rlr}
& f o l d l(f, n i l, x:: x r) & \\
= & \text { foldl }(f, n i l, x:: \ldots) \rightarrow \text { foldl }(f, f(x, n i l), \ldots) & \text { by Eq. } \text { foldl }_{2} \\
= & f(x, n i l) \rightarrow[x] & \text { by definition of } f, f(x, n i l), x r) \\
& \text { foldl }(f,[x], x r) . &
\end{array}
$$

Our sequence of proof steps did not reach the goal, while no further useful steps can be applied. Our proof attempt is stuck at proving

$$
\text { foldl }(f, n i l, x r) @[x]=\text { foldl }(f,[x], x r) .
$$

Proposition 5. Let $f=\lambda(x, x s) \in X \times \mathcal{L}(X) . x$:: xs. The reversal of a list $x s$ and a list ys are related to foldl ($f, y s, x s$) as follows.

$$
\forall x s \in \mathcal{L}(X) \forall y s \in \mathcal{L}(X):(\text { rev xs }) @ y s=\text { foldl }(f, y s, x s) .
$$

Proof. Induction over the structure of the list. Induction hypothesis:

$$
H(x s)=(\forall y s \in \mathcal{L}(X):(\text { rev xs }) @ y s=\text { foldl }(f, y s, x s))
$$

Base case We prove $H($ nil $)$, i.e.,

$$
\forall y s \in \mathcal{L}(X):(\text { rev nil }) @ y s=\text { foldl }(f, y s, n i l) .
$$

Let $y s$ be an element from $\mathcal{L}(X)$. We apply the following steps.

	$($ rev nil $) @ y s$	
$=$	rev nil \rightarrow nil	by Eq. rev
$=$	nil@ys	
$=$	ns $\rightarrow y s$	by Eq. $@_{1}$
$=$	foldl $(\ldots, y s, n i l) \leftarrow y s$	by Eq. foldl $_{1}$

Induction step Let x be an element of X, and let $x r$ be an element of $\mathcal{L}(X)$. Assume $H(x r)$, i.e.,

$$
\forall y s \in \mathcal{L}(X):(\text { rev xr }) @ y s=\operatorname{foldl}(f, y s, x r) .
$$

We prove $H(x:: x r)$, i.e.,

$$
\forall y s \in \mathcal{L}(X):(\operatorname{rev}(x:: x r)) @ y s=\text { foldl }(f, y s, x:: x r) .
$$

Let $y s$ be an element of $\mathcal{L}(X)$. We apply the following steps.

$\left(\operatorname{rev}(x:: x r)\right.$ @ ${ }^{\text {s }}$		
$\begin{aligned} & =\quad((\text { rev } x r) @[x]) @ y s \end{aligned}$	rev $(x:: x r) \rightarrow($ rev $x r) @[x]$	by Eq. rev_{2}
$(\text { rev xr }) @([x] @ y s)$		by associativity of @
$=\quad \text { foldl }(f,[x] @ y s, x r)$	$($ rev xr $) @ \ldots \rightarrow \operatorname{foldl}(f, \ldots, x r)$	by $H(x r)$
$=\quad \text { foldl }(f,(x:: n i l) @ y s, x r)$	$x:: n i l \leftarrow[x]$	by definition of :: ?
$\text { foldl }(f, x::(n i l @ y s), x r)$	($x:: n i l) @ y s \rightarrow x::(n i l @ y s)$	by Eq. @ ${ }_{2}$
$=\quad \operatorname{foldl}(f, x:: y s, x r)$	$n i l @ y s \rightarrow y s$	by Eq. $@_{1}$
$=\quad \text { foldl }(f, f(x, y s), x r)$	$f(x, y s) \leftarrow x:: y s$	by definition of f
$=\quad \text { foldl }(f, y s, x:: x r) \text {. }$	foldl $(f, y s, x:: x r) \leftarrow \operatorname{foldl}(f, f(x, y s), x r)$	by Eq. foldl ${ }_{2}$

References

1. Gert Smolka. Programmierung - eine Einführung in die Informatik mit Standard ML. Oldenbourg Wissenschaftsverlag, 2008.
