
S. Schwoon /D. Suwimonteerabuth Winter Term 2008/09

Fundamental Algorithms

Solution Keys 9

1. Let w and v be arrays of length n denoting weights and values, respectively, for all
object types. The maximum value can be obtained by calling the following procedure
fill(1, W).

Procedure fill

Input: object type i, weight r

Output: the maximum value obtained from filling with object types i to n

with total weight not exceeding r

m := 0;
for k = i to n do

if w[k] ≤ r then
m := max(m, v[k] + fill(k, r − w[k]));

fi

od

return m;

2. (a)

a

b

c

d

e

f

g
0

6

15

11

13

14

15

6 5

9

7 10

2 2

1

1

4 3

(b) The resulting distances are identical to (a). However, the distances for f and c are
wrong because there is a shorter parth from e to f , i.e. via g.

(c) The shortest path has infinite length, since the weight of the cycle d, e, f is negative.
Therefore, one can always obtain shorter paths by repeating the cycle again and
again.

(d) In the following, we use a data structure called queue. In a queue, the first element
added to the queue will be the first one to be removed. Given a queue and a node v,
the operation enqueue(v) adds v into the queue. The operation dequeue(), on the
other hand, removes the first element from the queue.

Given a graph and a node u, the following algorithm calculates the shortest distances
from u to all nodes in the graph.

Input: graph (V, E), distance function x, node u

Output: array of distances from u

foreach v ∈ V do d[v] = ∞;
d[u] = 0;

enqueue(u);
while queue not empty do

v := dequeue();
foreach w adjacent to v do

if d[v] + x(v, w) < d[w] then
d[w] = d[v] + x(v, w);
if w not in queue then

enqueue(w);
fi

fi

od

od

return d;

Notice that the algorithm does not terminate when negative cycles are present.
However, by stopping after any vertex has dequeued |V | + 1 times, termination can
be guaranteed.

Since each vertex can dequeue at most |V | times, it can be shown that the running
time of the algorithm is O(|V | · |E|).

2

