Fundamental Algorithms Solution Keys 9

1. Let w and v be arrays of length n denoting weights and values, respectively, for all object types. The maximum value can be obtained by calling the following procedure fill $(1, W)$.

Procedure fill
Input: object type i, weight r
Output: the maximum value obtained from filling with object types i to n with total weight not exceeding r

```
\(m:=0\);
for \(k=i\) to \(n\) do
    if \(w[k] \leq r\) then
                \(m:=\max (m, v[k]+\operatorname{fill}(k, r-w[k])) ;\)
            fi
od
return \(m\);
```

2. (a)

(b) The resulting distances are identical to (a). However, the distances for f and c are wrong because there is a shorter parth from e to f, i.e. via g.
(c) The shortest path has infinite length, since the weight of the cycle d, e, f is negative. Therefore, one can always obtain shorter paths by repeating the cycle again and again.
(d) In the following, we use a data structure called queue. In a queue, the first element added to the queue will be the first one to be removed. Given a queue and a node v, the operation enqueue (v) adds v into the queue. The operation dequeue(), on the other hand, removes the first element from the queue.
Given a graph and a node u, the following algorithm calculates the shortest distances from u to all nodes in the graph.

Input: graph (V, E), distance function x, node u Output: array of distances from u
foreach $v \in V$ do $d[v]=\infty$;
$d[u]=0$;
enqueue (u);
while queue not empty do $v:=$ dequeue();
foreach w adjacent to v do
if $d[v]+x(v, w)<d[w]$ then
$d[w]=d[v]+x(v, w) ;$
if w not in queue then
enqueue (w);
fi
fi
od
od
return d;
Notice that the algorithm does not terminate when negative cycles are present. However, by stopping after any vertex has dequeued $|V|+1$ times, termination can be guaranteed.
Since each vertex can dequeue at most $|V|$ times, it can be shown that the running time of the algorithm is $\mathcal{O}(|V| \cdot|E|)$.

