
S. Schwoon /D. Suwimonteerabuth Winter Term 2008/09
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1. Assume that nodes are uniquely numbered with 1 to n, where n is the number of nodes.
We first give our data structure for representing adjacency lists. Let Entry be a record
consisting of three items: (i) node, an integer; (ii) edge, a pointer to Edge (the data
structure for edges in the lecture); (iii) next, a pointer to Entry. The item node is the
node that edge points to. An adjacency list is a sequence of Entry, connected in a row
by using next. Therefore, a graph can be represented by an array of length n, whose
elements are pointers to adjacency lists. Let us denote the array by adj from now on.

We now propose an algorithm that finds a Euler circle in a graph. The algorithm assumes
that the graph is connected and the Euler circle exists. The idea of the algorithm is to
traverse the adjacency lists starting from node 1, and find a sequence of edges which leads
to node 1 again. The output is a list of Entry. Then, we look at each node in the list and
repeat the step above by finding loops starting from that node and avoiding the edges
that are already visited. The new loops (which is again a list of Entry) are inserted into
the original list.

For this, we need to extend the record Edge (from the lecture) to include an extra item:
visited, a Boolean variable. It is initially set to false for each edge, and will be set to true
in the course of the algorithm to denote that the edge is already taken into consideration
and should be ignored in the future. As a consequence, we need a procedure to find the
next entry in an adjacency list that corresponds to an unvisited edge.

Procedure nextEntry

Input: a node i

Output: the next entry in adj[i] that corresponds to an unvisited edge

t := adj[i];
while t 6= NIL and t→.edge→.visited do

t := t→.next;
od

if t 6= NIL then adj[i] := t→.next;
return t;

Let x := new Entry(a, b, c) be a shorthand for

x := new Entry; x→.node := a; x→.edge := b; x→.next := c; .

Given a node s and an entry t, the following procedure traverses adjacency lists from
entry t, and construct a (new) list of entries where the last entry corresponds to node s.
Notice that edges are immediately marked as visited at the beginning of the procedure,
and therefore will be ignored (by nextEntry) in the future.



Procedure findPath

Input: a node s, an entry t

Output: a list of entries, starting at t and ending at an entry with node s

t→.edge→.visited := true;
if t→.node = s then return new Entry(s, t→.edge, NIL);
return new Entry(t→.node, t→.edge, findPath(s, nextEntry(t→.node)));

If l1 and l2 are lists of entries, we denote in the following by insert(l1, l2) a procedure
that inserts list l2 into list l1 at the position immediately after the first entry. We can
now construct the main procedure.

Procedure main

Input: an array of adjacency lists adj
Output: a list of entries representing an Euler circle

list := new Entry(1, adj[1]→.edge, findPath(1, nextEntry(adj[1]→.node)));
itr := list→.next;
while itr 6= NIL do

while t := nextEntry(itr→.node) 6= NIL do
newlist := findPath(t→.node, nextEntry(t→.node));
insert(itr, newlist);

od

itr := itr→.next;
od

return list;

2. The reverse of a pre-order numbering can violate the partial order! Consider as an example
the following graph with a possible pre-order numbering next to the nodes:
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After reversing, we obtain the following order: b, c, a; which violates the fact that c ≺ b,
i.e. c is reachable from b.

3. See exercise sheet 9.
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