
S. Schwoon /D. Suwimonteerabuth Winter Term 2008/09

Fundamental Algorithms

Solution Keys 5

1. We consider the case where n is an even number. (We only need to split a and b into
⌊n/2⌋ and ⌈n/2⌉ digits if n is an odd number.) The multiplication becomes

ab = 10nux + 10n/2(uy + vx) + vy .

At first glance, it seems that we reduce a single multiplication of size n into four multi-
plications of size n/2. However, with the following observation the term (uy + vx) can be
computed by a single multiplication, given that the values of ux and vy are known:

uy + vx = (u + v)(x + y) − ux − vy .

Therefore, we can compute a multiplication of size n by computing three multiplications
of size n/2. Let t(n) be the time required for multiplying two n-digit numbers. We have

t(n) = 3t(n/2) + g(n) ,

where g(n) ∈ Θ(n) is the time required for shifts and additions. It can be shown that
t(n) ∈ Θ(nlog 3), which is better than the time complexity of long multiplication.

2. Since each comparison can exclude at most half of relative orderings of elements and there
can be n!

2n
possible inputs, any comparison sort needs to make at least

log2(n!) − n = Θ(n log n) − n = Θ(n log n)

comparisons.

3. The following procedure preprocess uses the idea of the counting sort algorithm. The
first two loops count the number of occurrences of a[i] for each i between 1 and n. The last
loop accumulates the results: b[i] therefore memorizes the number of elements between 1
and i.

Procedure preprocess
Input: array a of length n, whose elements are in the range [1, k]
Output: array b

for i = 1 to k do b[i] := 0 od;
for i = 1 to n do b[a[i]] := b[a[i]] + 1 od;
for i = 2 to k do b[i] := b[i] + b[i − 1] od;
return b;

With array b, the procedure query finds the number of elements between u and v in a
constant time.

Procedure query
Input: array b, integers u and v in the range [1, k]
Output: the number of elements in a between u and v

if u = 1 then return b[v] fi;
return b[v] − b[u − 1];


