Fundamental Algorithms Solution Keys 5

1. We consider the case where n is an even number. (We only need to split a and b into $\lfloor n / 2\rfloor$ and $\lceil n / 2\rceil$ digits if n is an odd number.) The multiplication becomes

$$
a b=10^{n} u x+10^{n / 2}(u y+v x)+v y .
$$

At first glance, it seems that we reduce a single multiplication of size n into four multiplications of size $n / 2$. However, with the following observation the term $(u y+v x)$ can be computed by a single multiplication, given that the values of $u x$ and $v y$ are known:

$$
u y+v x=(u+v)(x+y)-u x-v y .
$$

Therefore, we can compute a multiplication of size n by computing three multiplications of size $n / 2$. Let $t(n)$ be the time required for multiplying two n-digit numbers. We have

$$
t(n)=3 t(n / 2)+g(n),
$$

where $g(n) \in \Theta(n)$ is the time required for shifts and additions. It can be shown that $t(n) \in \Theta\left(n^{\log 3}\right)$, which is better than the time complexity of long multiplication.
2. Since each comparison can exclude at most half of relative orderings of elements and there can be $\frac{n!}{2^{n}}$ possible inputs, any comparison sort needs to make at least

$$
\log _{2}(n!)-n=\Theta(n \log n)-n=\Theta(n \log n)
$$

comparisons.
3. The following procedure preprocess uses the idea of the counting sort algorithm. The first two loops count the number of occurrences of $a[i]$ for each i between 1 and n. The last loop accumulates the results: $b[i]$ therefore memorizes the number of elements between 1 and i.

Procedure preprocess
Input: array a of length n, whose elements are in the range $[1, k]$
Output: array b
for $i=1$ to k do $b[i]:=0$ od;
for $i=1$ to n do $b[a[i]]:=b[a[i]]+1$ od;
for $i=2$ to k do $b[i]:=b[i]+b[i-1]$ od;
return b;
With array b, the procedure query finds the number of elements between u and v in a constant time.

Procedure query
Input: array b, integers u and v in the range $[1, k]$
Output: the number of elements in a between u and v
if $u=1$ then return $b[v] \mathbf{f i}$;
return $b[v]-b[u-1]$;

