Fundamental Algorithms

Solution Keys 4

1. (a) Procedure selection

Input: array a of length n, index s
Output: the s-th smallest element

```
\(i:=1 ; j:=n\);
while true do
    \(k, l:=\operatorname{partition}(a, i, j)\);
    if \(s \leq k\) then \(j:=k\);
    else if \(s \geq l\) then \(i:=l\);
    else return \(a[s]\);
od
```

To ease the complexity analysis, we assume from now on that elements of a are distinct. The worse case happens when e.g. a is sorted and $s=n$. If this is the case, selection takes $\Theta\left(n^{2}\right)$ time.
For the average case, we need to consider all possible permutations of elements of a. Assume that all n ! permutations are equally likely. Let $t(n)$ be the average time for selection:

$$
t(n)=g(n)+\frac{1}{n} \sum_{l=0}^{n-1} t(l) \leq d n+\frac{1}{n} \sum_{l=0}^{n-1} t(l),
$$

where $g(n) \in \Theta(n)$ is the time for partition and d is a constant bound. We now prove that $t(n) \in \mathcal{O}(n)$ by showing that there exists a constant c such that $t(n) \leq c n$. We proceed by induction.
Basis $t(0)=0$ and $t(1)=d$. Choose $c \geq d$.
Inductive step From the definition and the induction hypothesis

$$
t(n) \leq d n+\frac{1}{n} \sum_{l=0}^{n-1} t(l) \leq d n+\frac{1}{n} \sum_{l=0}^{n-1} c l=d n+\frac{c}{n} \frac{n(n-1)}{2}=\left(d+\frac{c}{2}\right) n-\frac{c}{2} .
$$

Therefore, $\left(d+\frac{c}{2}\right) n-\frac{c}{2} \leq c n$, if $d+\frac{c}{2} \leq c$. Choose $c \geq 2 d$.
(b) Procedure medianofmedians

Input: array a of length n
Output: the median of medians
if $n \leq 5$ then
return median5(a);
fi
$m:=\lfloor n / 5\rfloor ;$
for $i:=1$ to m do
$b:=\operatorname{median} 5(a[5 i-4, \ldots, 5 i]) ;$
end
return selection $(b,\lceil m / 2\rceil)$;
(c) selection takes $\Theta(n)$ time in the worse case when medianofmedians is used for finding pivots. We sketch the proof below.
Let p be the value returned by medianofmedians (a). Since $b[i]$ is the median of $a[5 i-4, \ldots, 5 i]$, at least three elements in $a[5 i-4, \ldots, 5 i]$ are less than $b[i]$. Moreover, the fact that p is the median of b implies that at least $m / 2$ elements in b are less than or equal to p, which means that at least $3 \mathrm{~m} / 2$ elements in a are less than or equal to p. However, $m=\lfloor n / 5\rfloor \geq(n-4) / 5$, thus at least $(3 n-12) / 10$ elements in a are less than or equal to p. On the other hand, at most $(7 n+12) / 10$ elements in a are strictly larger than p.
Let $t(n)$ be the worst case time for selection (a, s). Since partition and constructing b takes linear time and after a loop there are at most $(7 n+12) / 10$ to be considered, we have

$$
t(n) \leq d n+t(\lfloor n / 5\rfloor)+\max \{t(m) \mid m \leq(7 n+12) / 10\}
$$

for some constant d. To prove that $t(n) \in \mathcal{O}(n)$, we need to find a constant c such that $t(n) \leq c n$ for all $n \geq 1$. We proceed by constructive induction on n.
Basis With n_{0} to be determined later, we have freedom to choose the constant c such that $t(n) \leq c n$ for all $1 \leq n \leq n_{0}$, i.e. choose $c \geq t(n) / n$.
Inductive step Consider any integer $n>n_{0}$. By the induction hypothesis, we have $t(m) \leq c m$ when $1 \leq m<n$. Now we need to find c such that $t(n) \leq c n$ holds.

$$
\begin{aligned}
t(n) & \leq d n+t(\lfloor n / 5\rfloor)+\max \{t(m) \mid m \leq(7 n+12) / 10\} \\
& \leq d n+n / 5+(7 n+12) / 10 \text { (by the induction hypothesis) } \\
& =c n-(c / 10-d-6 c / 5 n) n
\end{aligned}
$$

Therefore, $t(n) \leq c n$ if $(c / 10-d-6 c / 5 n) \geq 0$, which is equivalent to

$$
c \geq \frac{10 d}{1-\frac{12}{n}}
$$

when $n \geq 13$. Therefore, any choice of $n_{0} \geq 12$ and

$$
c \geq \frac{10 d}{1-\frac{12}{n_{0}+1}}
$$

would make the induction step correct. For instance, choose $n_{0}=23$ and $c \geq 20 d$. So, it suffices to set

$$
c=\max (20 d, \max \{t(m) / m \mid 1 \leq m \leq 23\}
$$

to conclude that $t(n) \leq c n$ for all $n \geq 1$.
2. See execise sheet 5 .

