S. Schwoon / D. Suwimonteerabuth Winter Term 2008/09

Fundamental Algorithms
Solution Keys 2

1. Let my, ng, and pi be the values of m, n, and p, respectively, after entering the loop k
times. To prove that mn+p = M N is a loop invariant of the algorithm, we instead prove
that mgns + pr = M N for all k£ > 0. We proceed by induction.

Basis Obviously, mong + po = M N, since initially pg = 0, M = mg, and N = ny.
Inductive step We prove that for all £ > 0:

M1 Mkt1 + Pry1 = MN |

which, from the algorithm, can be rewritten to

{%J M+ i+ = MN | (1)

where x = 0, if m;, is even and x = n;, if my is odd. We consider two cases depending on
the value of my:

(i) If my is even, Equation (1) becomes myny+py = M N, which is true by the induction
hypothesis.

(i) If my is odd, Equation (1) becomes

-1
(mk2 ) 2ng +pr +np = MN
mgng +pr = MN

which is again true by the induction hypothesis.

The loop invariant can be used to prove that the algorithm works correctly. With m

and n are positive integers as the precondition, it can be readily seen that after the loop
m =0, thus p = MN.

2. The following algorithm computes f,, in ©(n) time under the assumption that arithmetic
operations take constant time.

Input: Non-negative integer n
Output: f,
1:=1;7:=0;
for k=1 ton do
ji= it i
1:=7—1
end
return 7;



Let j, and i, be the values of j and i, respectively, after entering the loop k times. We
prove the following loop invariant: j, = fx for all £ > 0 and ¢, = f,_; for all & > 0.
Again, we proceed by induction.

Basis Obviously, jo =0= fo, 1 =1 = f1, and i1 =0 = f;.

Inductive step
Jre1 = Ip+ Jk (Algorithm)
= fe_1+ fr (Induction hypothesis)

= Jfe+1
etl1 = Jr+1 — Uk (Algorithm)
ik + jkr — i = jr (Algorithm)
= fi (Induction hypothesis)

The loop invariant can be used to prove that the algorithm works correctly. With j =0
and ¢ = 1 as the precondition, it can be readily seen that after the loop j = f,.

(a) The procedure percolate:

Input: an array a, index ¢
Output: if 1...2— 1 is a heap, then afterwards 1...7 is a heap.

k=1
repeat
j = ki
if > 1 and a[j/2] < a[k]| then
k:=3/2;
fi
swap(alj], a[k]);
until j =k ;

(b) We recall from the lecture the procedure that constructs heaps by means of heapify:

Input: an array a with indices 1...n
Output: a heap with elements from a

for i = |[n/2| downto 1 do
heapify(a,n,i);
end

If a heap contains n nodes, we say that the root is at level |lgn], and children of a
node at level j are at level 7 — 1. It can be seen that there is always 1 node at level
k = |lgn] (the root), 2 nodes at level k — 1, ..., and 2! nodes at level 1.

Let t(n) be the number of trips around the loop required to construct a heap of n
elements. Since to sift down a node at level r, we make at most r + 1 trips around
the loop. Hence,
tn) < 2.2 432724 4 (k+1)-2°
< 2P oktlo7l 4 9.972413.273 4 ) = 28 422 < 4p
Therefore, the procedure in the lecture requires O(n) to construct a heap.
Now, we consider another procedure that constructs a heap by means of percolate:
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Input: an array a with indices 1...n
Output: a heap with elements from a

for 1 =2 ton do

percolate(a,i);
end

Again, let t(n) be the number of trips around the loop required to construct a heap
of n elements. Since to percolate node i, we make at most |lgi| 4+ 1 trips around
the loop. Hence,

tn) <> lgi] +1 <) 1gi+n
i=2 i=1
However, n! < n", thus lgn! < nlgn for all n > 1. Therefore, t € O(nlogn).

Similarly, one can show that t € Q(nlogn), which implies that new algorithm is
asymptotically slower than the one presented in the lecture.



