Fundamental Algorithms

Solution Keys 2

1. Let m_{k}, n_{k}, and p_{k} be the values of m, n, and p, respectively, after entering the loop k times. To prove that $m n+p=M N$ is a loop invariant of the algorithm, we instead prove that $m_{k} n_{k}+p_{k}=M N$ for all $k \geq 0$. We proceed by induction.

Basis Obviously, $m_{0} n_{0}+p_{0}=M N$, since initially $p_{0}=0, M=m_{0}$, and $N=n_{0}$.
Inductive step We prove that for all $k \geq 0$:

$$
m_{k+1} n_{k+1}+p_{k+1}=M N
$$

which, from the algorithm, can be rewritten to

$$
\begin{equation*}
\left\lfloor\frac{m_{k}}{2}\right\rfloor 2 n_{k}+p_{k}+x=M N, \tag{1}
\end{equation*}
$$

where $x=0$, if m_{k} is even and $x=n_{k}$ if m_{k} is odd. We consider two cases depending on the value of m_{k} :
(i) If m_{k} is even, Equation (1) becomes $m_{k} n_{k}+p_{k}=M N$, which is true by the induction hypothesis.
(ii) If m_{k} is odd, Equation (1) becomes

$$
\begin{aligned}
\left(\frac{m_{k}-1}{2}\right) 2 n_{k}+p_{k}+n_{k} & =M N \\
m_{k} n_{k}+p_{k} & =M N,
\end{aligned}
$$

which is again true by the induction hypothesis.
The loop invariant can be used to prove that the algorithm works correctly. With m and n are positive integers as the precondition, it can be readily seen that after the loop $m=0$, thus $p=M N$.
2. The following algorithm computes f_{n} in $\Theta(n)$ time under the assumption that arithmetic operations take constant time.

Input: Non-negative integer n
Output: f_{n}

```
i:= 1; j:= 0;
for }k=1\mathrm{ to }n\mathrm{ do
    j:=i+j;
    i:= j-i;
end
return j;
```

Let j_{k} and i_{k} be the values of j and i, respectively, after entering the loop k times. We prove the following loop invariant: $j_{k}=f_{k}$ for all $k \geq 0$ and $i_{k}=f_{k-1}$ for all $k>0$. Again, we proceed by induction.
Basis Obviously, $j_{0}=0=f_{0}, j_{1}=1=f_{1}$, and $i_{1}=0=f_{0}$.

Inductive step

$$
\begin{array}{rll}
j_{k+1} & =i_{k}+j_{k} & \text { (Algorithm) } \\
& =f_{k-1}+f_{k} & \text { (Induction hypothesis) } \\
& =f_{k+1} & \\
i_{k+1}=j_{k+1}-i_{k} & \text { (Algorithm) } \\
= & i_{k}+j_{k}-i_{k}=j_{k} & \text { (Algorithm) } \\
=f_{k} & \text { (Induction hypothesis) }
\end{array}
$$

The loop invariant can be used to prove that the algorithm works correctly. With $j=0$ and $i=1$ as the precondition, it can be readily seen that after the loop $j=f_{n}$.
3. (a) The procedure percolate:

Input: an array a, index i
Output: if $1 \ldots i-1$ is a heap, then afterwards $1 \ldots i$ is a heap.

```
\(k:=i\);
repeat
    \(j:=k\);
    if \(j>1\) and \(a[j / 2]<a[k]\) then
        \(k:=j / 2 ;\)
    fi
\(\operatorname{swap}(a[j]\),
until \(j=k ;\)
```

(b) We recall from the lecture the procedure that constructs heaps by means of heapify:

Input: an array a with indices $1 \ldots n$
Output: a heap with elements from a

```
for }i=\lfloorn/2\rfloor\mathrm{ downto 1 do
    heapify(a,n,i);
end
```

If a heap contains n nodes, we say that the root is at level $\lfloor\lg n\rfloor$, and children of a node at level j are at level $j-1$. It can be seen that there is always 1 node at level $k=\lfloor\lg n\rfloor$ (the root), 2 nodes at level $k-1, \ldots$, and 2^{k-1} nodes at level 1 .
Let $t(n)$ be the number of trips around the loop required to construct a heap of n elements. Since to sift down a node at level r, we make at most $r+1$ trips around the loop. Hence,

$$
\begin{aligned}
t(n) & \leq 2 \cdot 2^{k-1}+3 \cdot 2^{k-2}+\ldots+(k+1) \cdot 2^{0} \\
& <-2^{k}+2^{k+1}\left(2^{-1}+2 \cdot 2^{-2}+3 \cdot 2^{-3}+\ldots\right)=-2^{k}+2^{k+2}<4 n
\end{aligned}
$$

Therefore, the procedure in the lecture requires $\mathcal{O}(n)$ to construct a heap.
Now, we consider another procedure that constructs a heap by means of percolate:

Input: an array a with indices $1 \ldots n$
Output: a heap with elements from a

```
for }i=2\mathrm{ to }n\mathrm{ do
    percolate(a,i);
end
```

Again, let $t(n)$ be the number of trips around the loop required to construct a heap of n elements. Since to percolate node i, we make at most $\lfloor\lg i\rfloor+1$ trips around the loop. Hence,

$$
t(n) \leq \sum_{i=2}^{n}\lfloor\lg i\rfloor+1 \leq \sum_{i=1}^{n} \lg i+n
$$

However, $n!\leq n^{n}$, thus $\lg n!\leq n \lg n$ for all $n \geq 1$. Therefore, $t \in \mathcal{O}(n \log n)$.
Similarly, one can show that $t \in \Omega(n \log n)$, which implies that new algorithm is asymptotically slower than the one presented in the lecture.

