
S. Schwoon /D. Suwimonteerabuth Winter Term 2008/09

Fundamental Algorithms

Solution Keys 2

1. Let mk, nk, and pk be the values of m, n, and p, respectively, after entering the loop k
times. To prove that mn+p = MN is a loop invariant of the algorithm, we instead prove
that mknk + pk = MN for all k ≥ 0. We proceed by induction.

Basis Obviously, m0n0 + p0 = MN , since initially p0 = 0, M = m0, and N = n0.

Inductive step We prove that for all k ≥ 0:

mk+1nk+1 + pk+1 = MN ,

which, from the algorithm, can be rewritten to

⌊

mk

2

⌋

2nk + pk + x = MN , (1)

where x = 0, if mk is even and x = nk if mk is odd. We consider two cases depending on
the value of mk:

(i) If mk is even, Equation (1) becomes mknk+pk = MN , which is true by the induction
hypothesis.

(ii) If mk is odd, Equation (1) becomes

(

mk − 1

2

)

2nk + pk + nk = MN

mknk + pk = MN ,

which is again true by the induction hypothesis.

The loop invariant can be used to prove that the algorithm works correctly. With m
and n are positive integers as the precondition, it can be readily seen that after the loop
m = 0, thus p = MN .

2. The following algorithm computes fn in Θ(n) time under the assumption that arithmetic
operations take constant time.

Input: Non-negative integer n
Output: fn

i := 1; j := 0;
for k = 1 to n do

j := i + j;
i := j − i;

end

return j ;



Let jk and ik be the values of j and i, respectively, after entering the loop k times. We
prove the following loop invariant: jk = fk for all k ≥ 0 and ik = fk−1 for all k > 0.
Again, we proceed by induction.

Basis Obviously, j0 = 0 = f0, j1 = 1 = f1, and i1 = 0 = f0.

Inductive step
jk+1 = ik + jk (Algorithm)

= fk−1 + fk (Induction hypothesis)
= fk+1

ik+1 = jk+1 − ik (Algorithm)
= ik + jk − ik = jk (Algorithm)
= fk (Induction hypothesis)

The loop invariant can be used to prove that the algorithm works correctly. With j = 0
and i = 1 as the precondition, it can be readily seen that after the loop j = fn.

3. (a) The procedure percolate:

Input: an array a, index i
Output: if 1 . . . i − 1 is a heap, then afterwards 1 . . . i is a heap.

k := i;
repeat

j := k;
if j > 1 and a[j/2] < a[k] then

k := j/2;
fi

swap(a[j], a[k]);
until j = k ;

(b) We recall from the lecture the procedure that constructs heaps by means of heapify:

Input: an array a with indices 1 . . . n
Output: a heap with elements from a

for i = ⌊n/2⌋ downto 1 do
heapify(a, n, i);

end

If a heap contains n nodes, we say that the root is at level ⌊lg n⌋, and children of a
node at level j are at level j − 1. It can be seen that there is always 1 node at level
k = ⌊lg n⌋ (the root), 2 nodes at level k − 1, . . ., and 2k−1 nodes at level 1.

Let t(n) be the number of trips around the loop required to construct a heap of n
elements. Since to sift down a node at level r, we make at most r + 1 trips around
the loop. Hence,

t(n) ≤ 2 · 2k−1 + 3 · 2k−2 + . . . + (k + 1) · 20

< −2k + 2k+1(2−1 + 2 · 2−2 + 3 · 2−3 + . . .) = −2k + 2k+2 < 4n

Therefore, the procedure in the lecture requires O(n) to construct a heap.

Now, we consider another procedure that constructs a heap by means of percolate:

2



Input: an array a with indices 1 . . . n
Output: a heap with elements from a

for i = 2 to n do
percolate(a, i);

end

Again, let t(n) be the number of trips around the loop required to construct a heap
of n elements. Since to percolate node i, we make at most ⌊lg i⌋ + 1 trips around
the loop. Hence,

t(n) ≤
n

∑

i=2

⌊lg i⌋ + 1 ≤
n

∑

i=1

lg i + n

However, n! ≤ nn, thus lg n! ≤ n lg n for all n ≥ 1. Therefore, t ∈ O(n log n).

Similarly, one can show that t ∈ Ω(n log n), which implies that new algorithm is
asymptotically slower than the one presented in the lecture.

3


