S. Schwoon / D. Suwimonteerabuth

Winter Term 2008/09

Fundamental Algorithms Solution Keys 1

1. We prove the correctness of the multiplication à la russe by mathematical induction. Let P(m, n) be the multiplication result of positive integers m and n.

Basis Obviously, P(1, n) = n for any positive integers n.

Inductive step From the definition of P(m, n) we have

$$P(m,n) = P(\left\lfloor \frac{m}{2} \right\rfloor, 2n) + x$$
,

where x = 0, if m is even and x = n, if m is odd. Since

$$P(\left\lfloor \frac{m}{2} \right\rfloor, 2n) = \left\lfloor \frac{m}{2} \right\rfloor \cdot 2n$$

by the induction hypothesis. It follows that $P(m, n) = m \cdot n$.

- 2. See exercise sheet 2.
- 3. (a) True. Choose c = 10 and $n_0 = 2$. Then, for all $n \ge 2$:

$$10n + 40 \le 10n^2 + 20n + 10$$

(b) True. Choose $c_1 = 1$, $c_2 = \sqrt{2}$, and $n_0 = 23$. Then, for all $n \ge 23$:

$$-23 \le 0 \text{ and } 23 \le n$$

$$-23 \le (1-1)n \text{ and } 23 \le (2-1)n$$

$$-23 \le (1-c_1^2)n \text{ and } 23 \le (c_2^2-1)n$$

$$c_1^2n \le n+23 \text{ and } n+23 \le c_2^2n$$

$$c_1^2n \le n+23 \le c_2^2n$$

$$c_1\sqrt{n} \le \sqrt{n+23} \le c_2\sqrt{n}.$$

(c) False. We need to prove that $\forall c > 0 \ \forall n_0 \ \exists n \ge n_0 : n^{1000} \le c \cdot 2^n$, i.e. we need to show that there always exists n that makes the inequality true for any choice of c and n_0 . Choose $n = \max(n_0, 14000 - \log_2 c)$. We have $n \ge 14000 - \log_2 c$, which implies

$$n + \log_2 c \ge 1000 \log_2 n$$

 $c \cdot 2^n \ge n^{1000}$.

- (d) True. f(n) = o(g(n)) if and only if $\forall c > 0 \ \exists n_0 \ \forall n \ge n_0 : \frac{f(n)}{g(n)} < c$, which is exactly the definition of the limit statement $\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0$.
- (e) True. Recall that $f(n) = \Theta(g(n))$ if and only if $f(n) = \mathcal{O}(g(n))$ and $f(n) = \Omega(g(n))$.

i. We first show that if $\lim_{n\to\infty} \frac{f(n)}{g(n)} = L$, where $0 < L < \infty$, then $f(n) = \mathcal{O}(g(n))$. From the definition of the limit, we have

$$\forall \epsilon > 0 \ \exists n_0 \ \forall n \ge n_0 : \left| \frac{f(n)}{g(n)} - L \right| < \epsilon$$
.

Therefore, if $\epsilon = 1$, there must exist an n_0 such that for all $n \ge n_0$:

$$\begin{vmatrix} \frac{f(n)}{g(n)} - L \\ \\ \frac{f(n)}{g(n)} \\ \\ f(n) \\ \\ \end{vmatrix} < L + 1$$

$$f(n) < (L+1) \cdot g(n)$$

Now choose c = L + 1 in the definition of \mathcal{O} to prove that $f(n) = \mathcal{O}(g(n))$.

ii. Next, we show that if $\lim_{n\to\infty} \frac{f(n)}{g(n)} = L$, where $0 < L < \infty$, then $f(n) = \Omega(g(n))$. From the limit statement, we have $\lim_{n\to\infty} \frac{g(n)}{f(n)} = \frac{1}{L}$. Since $0 < 1/L < \infty$, it follows that $g(n) = \mathcal{O}(f(n))$, which in turn implies $f(n) = \Omega(g(n))$.