## Fundamental Algorithms

## Exercise Sheet 6

1. In this exercise, we are interested in two algorithms that work together. The first algorithm takes an array $a$ of length $n$ whose elements are in the range 1 to $k$ as the parameter. It processes $a$ and returns something for the second algorithm in $\mathcal{O}(n+k)$ time. The second algorithm takes the output of the first algorithm together with two integers $u$ and $v$ as the parameters, and returns the number of elements in $a$ that fall into the range [u..v].
Design both algorithms such that the second algorithm always takes $\mathcal{O}(1)$ time. What is your output of the first algorithm?
2. A binary search tree is a binary tree where nodes are ordered, i.e. for every node n of the tree all nodes reachable via n.left (resp. n.right) have smaller (resp. bigger-or-equal) values than n .value.

Write down two procedures that operate on binary search trees. Analyze the complexities.
(a) The procedure findMin takes a binary search tree as the parameter, and returns the node in the tree that contains the smallest value.
(b) The procedure remove takes a binary search tree and an integer $x$ as parameters, and removes a node containing the value $x$. The resulting tree must be a binary search tree.
3. Given a node $n$ in a binary tree $t$, the height of $n$ is the number of nodes in the longest path from $n$ to any leaf of $t$. The height of a binary tree is defined as the height of its root. For instance, the heights of the nodes with values 4 and 5 in the tree below are 3 and 1 , respectively. Since the node with value 4 is the root, the height of the tree is also 3.

(a) Determine the minimum and maximum numbers of nodes in a binary tree of height $h$.
(b) Extend the data type BinNode in the lecture to include an extra item height, which always indicates the height of a node. Redesign the algorithm binary_tree_insert in the lecture such that it always updates the height values correctly.
4. A binary tree is full if all of its nodes have either zero or two children. Let $B_{n}$ be the set of full binary trees with $2 n+1$ nodes, where each node has a distinct value in the range $[1,2 n+1]$. For instance, the tree in the previous example is full and belongs to the set $B_{2}$.
(a) Determine $B_{0}, B_{1}, B_{2}$, and $B_{3}$ by drawing all possible full binary trees with $1,3,5$, and 7 nodes, respectively.
(b) Determine $\left|B_{n}\right|$ for any $n \geq 0$.

