S. Schwoon / D. Suwimonteerabuth Winter Term 2008/09

Fundamental Algorithms
Exercise Sheet 5

1. Let a and b be integers having n digits. Long multiplication is a natural way of multiplying
a by b taught in schools: multiply a by each digit of b and then add up all the properly
shifted results. The operations needed are multiplications for single digits, shifts, and
additions. The time complexity is obviously ©(n?).

Devise a multiplication algorithm based on the divide-and-conquer paradigm that has a
better complexity, using only three operations above.

Hints: if n is an even number, we can rewrite a = 10"/?u + v where v and v are first and
last n/2 digits of a, respectively, and b = 10™2z + y, where x and y are first and last n,/2
digits of b, respectively.

2. A comparison sort is a type of sorting algorithm that determines the sorted order based
only on comparisons between input elements. For instance, insertion sort, heapsort, and
quicksort are comparison sorts; whereas counting sort and radix sort are not.

In the lecture, it has been shown that any comparison sort must make Q(nlogn) com-
parisons in the worst case to sort an array of n elements. The proof assumes that all
elements are distinct; hence, there are n! permutations, only one of which is in sorted
order. Since each comparison has only two possible outcomes, if the sorting algorithm is
always able to find the right permutation after at most h comparisons, we know that it
cannot distinguish more than 2" cases. Therefore, 2" > n!, or equivalently h > log,n!.
From Stirling’s approximation, we have log, n! € Q(nlogn), and the corresponding lower
bound.

We know, however, that sometimes comparison sorts can perform better than (nlogn)
in best cases. For instance, insertion sort requires only ©(n) when the array is already
sorted.

Show that there is no comparison sort whose running time is ©(n) for a fraction of 1/2"
of the inputs of length n.

3. In this exercise, we are interested in two algorithms that work together. The first algo-
rithm takes an array a of length n whose elements are in the range 1 to k as the parameter.
It processes a and returns something for the second algorithm in O(n + k) time. The
second algorithm takes the output of the first algorithm together with two integers u and
v as the parameters, and returns the number of elements in a that fall into the range
[w..v].

Design both algorithms such that the second algorithm always takes O(1) time. What is
your output of the first algorithm?



