S. Schwoon / D. Suwimonteerabuth

Fundamental Algorithms

Exercise Sheet 1

1. Consider the following description of the multiplication \dot{a} la russe:

Write the multiplicand and the multiplier, each at the head of a column. Repeat the following rule until the number in the left-hand column is 1: divide the number in the left-hand column by 2, ignoring any fractions, and double the number in the right-hand column. Next, cross out each row in which its lefthand side is even. The multiplication result is obtained by adding the remaining numbers in the right-hand column.

The following illustrates how to multiply 29 with 52:

29	52
-14-	
$\overline{7}$	208
3	416
1	832
	1508

Prove that for any positive integers m and n, multiplication à la russe always returns $m \cdot n$.

- 2. Write down the algorithm multiplication \hat{a} la russe using the notation introduced in the lecture. The algorithm should take two positive integers m and n, and compute the product in the variable p. Prove the correctness of your algorithm by using a loop invariant.
- 3. In Landau notation, we usually abuse notation by writing $f(n) = \mathcal{O}(g(n))$ to mean $f \in \mathcal{O}(g)$, where f and g are functions from natural numbers to real numbers. This convention is useful, since it allows us to write for instance $\mathcal{O}(n^2)$ without having to introduce a function for the polynomial n^2 .

With abuses of notation, determine whether the following statements are true or false. Justify your answers.

(a) $10n + 40 = \mathcal{O}(n^2 + 2n + 1).$

(b)
$$\sqrt{n+23} = \Theta(\sqrt{n}).$$

- (c) $n^{1000} = \Omega(2^n)$.
- (d) f(n) = o(g(n)) if and only if $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$.
- (e) If $\lim_{n\to\infty} \frac{f(n)}{g(n)} = L$, where $0 < L < \infty$, then $f(n) = \Theta(g(n))$.