Fundamental Algorithms
 Exercise Sheet 1

1. Consider the following description of the multiplication à la russe:

Write the multiplicand and the multiplier, each at the head of a column. Repeat the following rule until the number in the left-hand column is 1 : divide the number in the left-hand column by 2 , ignoring any fractions, and double the number in the right-hand column. Next, cross out each row in which its lefthand side is even. The multiplication result is obtained by adding the remaining numbers in the right-hand column.

The following illustrates how to multiply 29 with 52 :

29	52
14	104
7	208
3	416
1	832
	1508

Prove that for any positive integers m and n, multiplication \grave{a} la russe always returns $m \cdot n$.
2. Write down the algorithm multiplication \grave{a} la russe using the notation introduced in the lecture. The algorithm should take two positive integers m and n, and compute the product in the variable p. Prove the correctness of your algorithm by using a loop invariant.
3. In Landau notation, we usually abuse notation by writing $f(n)=\mathcal{O}(g(n))$ to mean $f \in \mathcal{O}(g)$, where f and g are functions from natural numbers to real numbers. This convention is useful, since it allows us to write for instance $\mathcal{O}\left(n^{2}\right)$ without having to introduce a function for the polynomial n^{2}.

With abuses of notation, determine whether the following statements are true or false. Justify your answers.
(a) $10 n+40=\mathcal{O}\left(n^{2}+2 n+1\right)$.
(b) $\sqrt{n+23}=\Theta(\sqrt{n})$.
(c) $n^{1000}=\Omega\left(2^{n}\right)$.
(d) $f(n)=o(g(n))$ if and only if $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0$.
(e) If $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=L$, where $0<L<\infty$, then $f(n)=\Theta(g(n))$.

