
S. Schwoon /D. Suwimonteerabuth Winter Term 2008/09

Fundamental Algorithms

Solutions to Example Problems

1. Growth of functions

(a) False. Intuitively, the notation O(n2) tells us that B runs “at most as fast as”
n2 time (modulo constant factors) on all inputs. This, however, does not prevent
the existence of some (if not all) inputs, on which B runs faster than O(n). For
instance, if the run-time (with input n) of A is determined by f(n) = 3n and for B

by g(n) = n2, then f ∈ O(n) and g ∈ O(n2) but f(n) > g(n) for n ≤ 2.

(b) f(n) =











0 if n ≤ 0;

2n + (n − 1) +

n−1
∑

i=1

i =
n2 + 5n − 2

2
otherwise.

(c) i. True. Choose c = 3 and n0 = 10. Then for all n ≥ n0: 3n ≤ 3n log n

ii. False. We need to prove that ∀c > 0 ∀n0 ∃n ≥ n0 : 3

2
n < c(n3/2 − n). Consider

the inequality:

3

2
n < c(n3/2 − n)

3

2
n < c · n(n1/2 − 1)

n >

(

3

2c
+ 1

)

2

.

Therefore, one can choose n = max
(

n0,
(

3

2c
+ 1

)2
)

to prove that the statement

above always holds.

2. Sorting

(a) The array a is not a heap, because the number of the root is less that the numbers
of its children. The array is a heap after a call to heapify with i = 1 and k = 5.

3

10 5

4 7

a

heapify

10

7 5

4 3

heapify(a, 5, 1)



(b) There are two problems in the algorithm.

i. The first problem occurs when largest + 1 is greater than k. In that case,
largest+1 must lie outside the slice i . . . k, and therefore the element a[largest+
1] in the first if-statement can be undefined. The mistake occurs, for instance,
for any even-sized array a (say, of size 2n) and i = n, k = 2n. The problem can
be fixed by adding an extra guard to the if-statement as follows:

if largest + 1 ≤ k and a[largest + 1] > a[largest] then

ii. There is another problem when the comparison in the second if-statement is
false, i.e., the array a is already a heap. In that case, i is incorrectly set to
largest, and therefore a[i] is wrongly set to tmp after the loop exits. For
instance, if a is 8, 10, 5, 4, 7, i is 1, and k is 5, then the algorithm outputs
10, 10, 5, 4, 8. The bug can be fixed by immediately exiting the loop when the
comparison fails, i.e., the second if-statement becomes:

if a[largest] > tmp then
a[i] := a[largest];

else
break;

fi

3. Searching

(a)

5

3 9

2 4 6 10

1 7

8

(b) The tree in (a) is not an AVL tree, since the node with value 6 violates the balancing
property. This can be fixed by the a single “right-right” rotation, which results in
the following tree.



5

3 9

2 4 7 10

1 6 8

(c) Let t be a pointer to the ordered binary tree. Call the following procedure fill(t, a, 1)
to fill the array, where the last two arguments are in-out parameters.

Procedure fill

Input: pointer t to an ordered binary tree, array a, index i

Output: fill the array a, starting from index i, with elements from the tree

if t = NIL then return ;
fill(t → .right, a, i);
a[i] := t → .value; i := i + 1;
fill(t → .left, a, i);

4. Graphs

(a) Consider the graph shown below. The desired numbering results from starting first
at d and then i.

a b

cd

e

f

gh

i

(b) The proposal is wrong. Consider the following graph G, which (trivially) contains
two SCCs. In pre-order numbering if node b is visited first, then b is labeled with 1
and a with 2. Then, when performing another search from the node with the lowest
number, i.e. b, in GR we wrongly conclude that a and b are in an SCC.

a b

(c) Recall that a heuristic function h is monotone if for all two adjacent nodes w and z,
where d(w, z) denotes the length of the actual shortest path between them, then

h(w) ≤ d(w, z) + h(z) .

In both graphs, one can readily check that the property holds for each pair of nodes.


