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Announcements

Website:

http://www7.in.tum.de/um/courses/fundalg/ws0809/

see the website for slides, exercise sheets etc

Email list: (to be collected)

for urgent announcements (sudden schedule changes etc)
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Other things

Intended audience:

CSE master students

Prerequisites:

basic knowledge of (discrete) mathematics

Literature: (for background reading)

Cormen, Leiserson, Rivest, Stein: Introduction to Algorithms, 2nd Print, 2001

Sedgewick: Algorithms, 2nd Print, 2002

Heun: Grundlegende Algorithmen, 2. Auflage, 2003

Vöcking et al: Taschenbuch der Algorithmen, 2008
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Part 1: Introduction
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Goals of the course

Learn important algorithmic concepts

Formalize problems, making them amenable to algorithmic solutions

Devise your own algorithmic solutions

Prove algorithms correct

Determine efficiency of algorithms
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What is “fundamental”?

Problems on discrete structures:

Sorting, searching

Lists, trees, graphs, other data structures

Arithmetic problems

Complexity measures, proofs of correctness
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What are “algorithms”?

An algorithm is an unambiguously defined sequence of atomic instructions
transforming some input into some output.

Real-life example: recipes for cooking or baking

Atomic instruction: an action that can be performed by the processor without
further explanation.

Alternative view: Given some pre-condition on the inputs, an algorithm
establishes a post-condition.
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Here, we are interested in algorithms to be performed by computers.

Notice: not all computer programs match this description. Some are not
definable in terms of inputs and outputs, but in terms of stimuli and reactions
(example: operating systems). The latter are called reactive programs. We are
not concerned with reactive programs in this course.

Important properties of computer algorithms:

terminate on all inputs (matching some pre-condition)

finitely described

work on infinitely many different inputs
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Example: Sorting

Problem: We are given some set of comparable objects (the input), e.g.

books (in a library), compared by title

numbers

We are supposed to arrange the objects in ascending/descending order (the
output).

Important real-life problem (e.g., library: books are ordered in the shelves)
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Fundamental issues

Notation for writing down algorithms (branching, repetition)

Proofs of correctness

Determining how many instructions an algorithm takes (complexity)
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Notation for algorithms

We introduce some basic notation for algorithms.
Later, we may extend it as needed.

Data: A variable denotes some storage location in the computer. Variables are
identified by their name; variables with different names denote different storage
locations. For now, each variable is assumed to store an integer value.

Examples: i, j, k

We also consider arrays. An array denotes a sequence of storage locations. A
particular element of the sequence is referenced by an index (written in
brackets). An index is any integer expression, including variables. An array is
specified along with its range of indices.

Examples: array a with indices 0..n

a[2], a[i], a[i+j]
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Assignment: An assignment manipulates data; it takes the form

v:=e,

where v is a variable and e some arithmetic expression (involving, e.g.,
variables, array locations, and constants). It puts the value of the expression into
the storage location denoted by the variable.

Examples: i = j+3, a[i] = a[j], i=i-1

Sequence: Given two instructions (e.g., assignments), we can arrange them in a
sequence separated by semicolon, denoting that the first should be performed
before the second.

Example: a[i] = a[j]; i = i+1
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Branching: Allows to do different things, depending on the input.

Example: if (i = 1) then 〈do something〉 else 〈something else〉 fi

Repetition: Allows to repeat (a sequence of) actions multiple times until some
condition is met (or rather, violated).

Example: while (i > 0) do i = i-1 od
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An abbreviation

Sometimes we want to perform the same sequence of actions for different values
of some variable. If i is a variable and S is a (sequence of) actions, then

for i = 1 to n do S od

is an abbreviation for

i = 1;

while (i <= n) do S; i=i+1 od
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An example

Here’s a small example algorithm that adds up numbers from 1 to n, storing the
sum in variable s. In other words the algorithm has input n, and its output is the
aforementioned sum.

s = 0;

for i = 1 to n do

s = s + i

od

In the alternative view, since we place no particular condition on the input n, its
precondition is n ≥ 0, and its postcondition is s = 1

2n(n + 1).

16



Correctness

We claim that after the algorithm s = 1
2n(n + 1) holds.

How can we prove it?

From mathematics, we know the principle of induction. It can be used to prove
that something holds for all n ≥ 0, such as

∑n
i=1 i = 1

2n(n + 1).

We first prove that some claim holds for n = 0.

Then we prove that, assuming that the claim holds for n = i , for some i ≥ 0,
then it follows that the claim holds also for n = i + 1.
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Proving loops correct

To prove that some postcondition Q holds in a program with a loop such as

for i = 1 to n do S od

we use a technique similar to induction.

More precisely, our aim is to find some condition I(i) (called an invariant), which
depends on i , and enjoys the following three properties:

When the execution first reaches the loop, I(0) holds.

If I(j − 1) holds for some value j , and S is executed for i = j , then after
execution of S I(j) holds.

I(n) implies Q.

In our example, we could choose I(i) to be s = 1
2i(i + 1).

(Prove the three properties!)
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Recall that a for loop is just an abbreviation for a while construct. Assume that
we are given a precondition P , a postcondition Q, and an algorithm of the form

while E do S od

We can generalise the invariant method to while constructs. The goal is to find
some invariant I with these properties:

P implies I;

if I ∧ E holds, then after execution of S I holds again;

I ∧ ¬E implies Q.
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A simple sorting algorithm (Insertion Sort)

Input: an array a with indices 1 . . . n.
Output: the original array a, but sorted in ascending order

for i = 1 to n do

j = i-1; k = a[i];

while j ≥ 1 ∧ a[j] > k do

a[j+1] = a[j]; j = j-1

od;

a[j+1] = k

od

How can we prove this program correct? Which invariants should we use?
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Complexity / Efficiency

It will be interesting for us to see how fast (or: efficient) algorithms are, i.e. how
many instructions they need to execute in order to produce the desired output.

In the Insertion Sort example, a good measure for efficiency is the number of
times that the body of the while loop is executed; all other instructions are
executed n times.

In the worst case (when the array is originally sorted in descending order), this
will happen 1

2n(n − 1) times. (Why?)

In the best case (when the input is already sorted in ascending order), the while
body is never executed.
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Discussion of complexity

The Insertion Sort algorithm behaves as follows:

In the best case, the number of instructions is a linear function of n.

In the worst case, it is a quadratic function.

In the average case, . . . ?

Complexity analysis usually focuses on worst-case analysis.

In this sense, Insertion Sort is “quadratic”. We shall see that there are better
solutions for sorting!
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Comparing functions

Is every linear function better than any quadratic function?

Let us compare f(n) = 100 · n and g(n) = n2.

n f(n) g(n)

1 100 1

5 500 25

10 1000 100

20 2000 400

50 5000 2500

100 10000 10000

200 20000 40000

500 50000 250000
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Growth of functions

We observe: g(n) eventually becomes bigger than f(n).

Let us generalize this observation: consider f(n) = d · n, for some constant c.

Independently of the choice of d , g(n) eventually “overtakes” f(n)!

Complexity analysis is concerned with the behaviour of algorithms for large
inputs. (“What happens if we want to solve BIG problems?”)

Therefore, we shall always consider linear functions as better than quadratic
functions.

We also want to abstract from “pesky” things like constant factors and minor
terms in the complexity. We shall formalize this in the next couple of slides.

24



Landau symbols

The following definitions characterize how functions compare asymptotically, i.e.
for large inputs.

Let f , g : IN → IR+. We define O(g) as the set of functions that “at most as fast”
as g. Formally:

f ∈ O(g) ⇔ ∃c > 0 ∃n0 ∀n ≥ n0 : f(n) ≤ c · g(n)

Intuitively, from some point on g is at least as big as f , modulo constant factors.
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Examples

Let f(n) = d · n and g(n) = n2. We show that f ∈ O(g).

Proof: Choose c = 1 and n0 = d . Then for all n ≥ n0:

f(n) = d · n = n0 · n ≤ n2 = c · g(n)

Let f(n) = 1
2n(n − 1) and g(n) = n2. Again, f ∈ O(g).

Proof: Immediate, choose c = n0 = 1.

26



Some important classes

“Constant” functions: O(1)

“Logarithmic” functions: O(log n)

“Linear” functions: O(n)

“Quadratic” functions: O(n2)

“Polynomial” functions:
∞⋃

k=0

O(nk)

“Exponential” functions:
⋃

c∈R+

O(cn)
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Other Landau symbols

O is the one Landau symbol that ist most often used in practice. (Especially
because it is useful for worst-case analysis.) But there are other, similar notions:

f grows “at least as fast” as g:

f ∈ Ω(g) ⇔ ∃c > 0 ∃n0 ∀n ≥ n0 : f(n) ≥ c · g(n)

f grows “just as fast” as g:

Θ(g) = O(g) ∩Ω(g)
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f grows “strictly slower” than g:

f ∈ o(g) ⇔ ∀c > 0 ∃n0 ∀n ≥ n0 : f(n) ≤ c · g(n)

f grows “strictly faster” than g:

f ∈ ω(g) ⇔ ∀c > 0 ∃n0 ∀n ≥ n0 : f(n) ≥ c · g(n)
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Example

Let f(n) = d · n and g(n) = n2. We show that f ∈ o(g).

Proof: Given any c > 0, choose n0 ≥ d
c . Then for all n ≥ n0:

d · n = c ·
d
c
· n ≤ c · n0 · n ≤ c · n2
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Useful laws

Transitivity: f ∈ O(g) and g ∈ O(h) implies f ∈ O(h).

Reflexivity: f ∈ Θ(f)

Symmetry: f ∈ Θ(g) implies g ∈ Θ(f)

Antisymmetry: f ∈ O(g) implies g ∈ Ω(f)
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Part 2: Sorting
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Another sorting algorithm (Bubble Sort)

Input: an array a with indices 1 . . . n.
Output: the original array a, but sorted in ascending order

for k = 1 to n-1 do

for i = 1 to n-k do

if a[i] > a[i+ 1] then

tmp = a[i]; a[i] = a[i+1]; a[i+1] = tmp

fi od od

Note: Line 4 swaps elements at two positions. In the future, we will abbreviate
this with a swap instruction, for better clarity.
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Another sorting algorithm (Bubble Sort)

Input: an array a with indices 1 . . . n.
Output: the original array a, but sorted in ascending order

for k = 1 to n-1 do

for i = 1 to n-k do

if a[i] > a[i+ 1] then

swap a[i], a[i+1]

fi od od

Note: Line 4 swaps elements at two positions. In the future, we will abbreviate
this with a swap instruction, for better clarity.
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How does Bubble Sort work?

Each iteration of the “outer loop” (with k ) ensures that the k -th biggest element is
in the right position.

After one iteration, the biggest element is in the right position.

After two iterations, the two biggest elements are in the right position.

· · ·

Invariant: I(k) =̂ “elements a[n − k + 1] to a[n] are in the right order”

The inner loop (with i) “pushes” bigger elements “downwards”.

Invariant: J (i) =̂ “element a[i] is the biggest among the first i elements”

35



Analysis of Bubblesort

One easily sees that the algorithm makes 1
2n(n − 1) steps, regardless of the

input.

This means the algorithm always takes O(n2) steps, (even Θ(n2)).

Comparison with Insertion Sort:

Insertion Sort also takes O(n2) steps for every input . . .

. . . but not Θ(n2) for every input (just in the worst case!).

For some inputs, Insertion Sort takes only linear time, but Bubble Sort always
takes quadratic time.

Therefore, Bubble Sort can be seen to be inferior to Insertion Sort, even
though both have the same worst-case complexity.
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Can we do better?

Both Insertion Sort and Bubble Sort take quadratic time in the worst case?
A natural question is, can one do better?

In the following, we will see that the answer is positive.

There are algorithms with O(n log n) worst-case running time.
Notice that n log n ∈ o(n2), i.e. grows strictly slower.

Moreover, one can prove that an n log n bound is optimal.
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Heaps

A heap is a binary forest with certain properties.

Forest: directed acyclic graph. Nodes without incoming edges are called
roots. All other nodes have one incoming edge.

Binary forest: Every node has at most two outgoing edges. Nodes without
outgoing edges are called leaves. If an edge leads from node v to node w , w
is a child of v .

(We will deal more formally with trees and other graphs later in the course. For
now this informal definition is sufficient.)
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Additional properties of heaps:

Every node is labelled by a number.

For each node, its number is larger than those of its children.

Example:

10

7 4

6 2 3
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10

7 4

6 2 3

Insight: An array (slice) can be interpreted as a binary forest.

The children of the element at position i are those at positions 2i and 2i + 1
(if these positions exist).

10 7 4 6 2 3
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Array slices and heaps

Consider the array slice from positions bn
2c+ 1 to n.

Every position is a root.

Therefore, this slice is a heap.

If the slice 1 . . . k is a heap, then so is the slice 1 . . . k − 1.

If the slice k . . . n is a heap, then the slice k − 1 . . . n is a heap except for position
k − 1.

We may need to “slide” element k − 1 “downwards”.
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Algorithm Heapify

Input: an array a with indices 1 . . . n, indices k and i
Output: if the slice i + 1 . . . k is a heap initially, then afterwards i . . . k is a heap.

while i ≤ k do

largest = i;

if 2i ≤ k and a[i] < a[2i] then largest = 2i fi;

if 2i + 1 ≤ k and a[largest] < a[2i + 1] then largest = 2i+1 fi;

if largest 6= i then

swap a[i], a[largest]; i = largest

else i = k+1 fi

od
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Algorithm Heapsort

Input: an array a with indices 1 . . . n.
Output: the original array a, but sorted in ascending order

for i = bn/2c downto 1 do

heapify a,n,i

od

for i = n downto 2 do

swap a[1],a[i];

heapify a,i-1,1

od
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Notation for algorithms II

The Heapsort algorithm (as denoted on the preceding slides) consists of two
parts.

the Heapify algorithm;

the Heapsort algorithm proper, which uses Heapify

We should clarify what exactly a line like this means:
heapify a,i-1,i
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Procedures and functions

In mathematics, we are used to define functions in terms of other functions, or
even recursively.

n! =

1 n=0
n · (n − 1)! otherwise

This means: In order to evaluate n!, first evaluate the expression (n − 1)!. Only
once one knows that value, one can continue to compute n!.

For algorithms, we adopt this idea:

A procedure P is simply an algorithm (with certain inputs and outputs).
Another algorithm (or procedure) Q can call P. Doing so means that Q
suspends its operation until P has finished, and then continues.

In the Heapsort algorithm, Heapify is such a procedure.
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Procedures with Parameters

In order for procedures to interoperate, they need to share data.

For instance, both Heapify and Heapsort procedures work on array a.

But also, both work on the variable i, but use them for different purposes.

We need to distinguish these cases:

We will declare what data is shared between procedures, and how.

We call the data shared between two processes parameters.

We distinguish in/out parameters, in parameters, and return values.
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In/out parameters

a is called an in/out parameter.

The Heapify procedure takes a from Heapsort.

It modifies a.

Once it terminates, the modified a is used by Heapsort.

In contrast, i is called an in parameter.

The Heapify procedure takes a parameter i. In the first call, this is the
variable i of Heapsort, in the second call it is the value 1.

Heapify then modifies i. But in Heapsort, we assume that, after the calls to
Heapify, i has not changed.

Conclusion: Heapify has its own copy of i, and does not pass its value back
to Heapsort.
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List of parameters

In the future, we will distinguish these cases carefully: Each algorithm/procedure
will be equipped with a list of parameters, i.e. its inputs and outputs.

Order in the list matters!

Each parameter is of the type in or in/out.

In Heapify, the list of parameters is a, k, i (in this order!)

a is an in/out parameter, k and i are in parameters.

In Heapsort, the parameters are a (in/out) and n (in).
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An operational model for parameters

The mechanics of procedures and parameters can be made more precise with
the idea of a stack.

A stack is an ordered list of data items with the following operations:

We can add another element to the “top” of the stack.

We can remove the topmost element from the stack.

We can read or write on the top element of the stack.

(Imagine a stack of papers!)
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Procedures and stacks

When procedures interoperate, we can imagine that each call creates a new
element on top of the stack.

That stack element contains the variables (including the parameters) of the
procedure, which we can subsequently read and write to.

Each time a procedure is called, a fresh stack element is created.

Upon creation (call), the parameters are initialised with the data specified by
the caller.

For instance, in the first call from Heapsort to Heapify,

Heapify’s a becomes Heapsort’s a.

Heapify’s k becomes Heapsort’s n.

Heapify’s i becomes Heapsort’s i.
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Notice that this may lead to multiple copies of the same variable, but on
different stack elements. Only the topmost stack element can be accessed.

A procedure could call itself (this is called recursion), in which case each call
creates a new copy of its variables.

Upon termination of a procedure, its in/out parameters are copied back to the
respective variables in the calling procedure.

In the example, Heapify’s a is copied into Heapsort’s a when Heapify
terminates.



A recursive procedure: Factorial

Here’s an example of a recursive procedure, which computes a factorial number.
Its parameters are n and k, where n is an in parameter, and f is an in/out
parameter.

If n is a non-negative integer, then afterwards f equals the factorial of n.

This procedure (called Factorial) calls itself recursively.

procedure Factorial

if n=0 then

f = 1

else

Factorial n-1,f;

f = f*n

fi
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Return values

When a procedure “computes something” (like a factorial), it is more convenient
to express this directly, rather than through an in/out parameter.

We introduce a return statement that takes an expression, e.g. return 0.

The call to such a procedure (say, f) is now an assigment, e.g. x = f(...).

The meaning of this is as follows:

f has got an addition unnamed/invisible in/out parameter.

When the procedure is called, the left-hand side variable of the assignment
becomes that parameter.

The return statement terminates the procedure and assigns the value of
the expression to that parameter.

Note: We can generalise this to multiple return values!
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Factorial expressed with return values

The parameter is still a non-negative integer n, and the return value has got the
value n!

procedure Factorial

if n=0 then

return 1

else

return n*Factorial(n-1)

fi
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A recursive sorting procedure

In the following, we introduce another sorting procedure (yet another one!)

This one works recursively and employs a divide-and-conquer strategy.

Its worst case complexity will turn out to be quadratic, but on average it performs
very well.

The procedure employs non-determinism (i.e., an element of random is involved).

The procedure is called Quicksort.
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Concept of Quicksort

We are given a (slice of an) array a.

Suppose the lowest index of the array is ` and the highest one h.

Suppose we have a way to partition the array into two parts, left and right, such
that all values in the left-hand part are smaller than the values in the right-hand
part. Then we just need to sort both parts individually.

To achieve this partiioning, Quicksort picks a pivot element p (any element of the
array).
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Partitioning

Quicksort actually creates three partitions:

The leftmost partition contains all values smaller than p.

All elements in the central partition are equal to p.

The rightmost partition contains all values larger than p.

p

hlBefore:

(any element)

hlAfter:

= p< p > p
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The partitioning algorithm

This algorithm is called partition. Its parameters are a (in/out, an array),
lo,hi (in). Upon termination, the part of a between indices lo and hi is a
partitioning (of the kind mentioned in the previous slide), and two values are
returned that delimit the partitions.
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procedure partition

p = any element of a[lo] through a[hi];

left = eq = lo; right = hi;

while (eq <= right) do

if (a[right] > p) then

right = right - 1

else

swap a[eq], a[right];

if (a[eq] < p) then

swap a[left], a[eq];

left = left + 1;

fi

eq = eq + 1

fi

od;

return left-1,eq
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The partitioning algorithm maintains the following invariant in the while loop:
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lo right hileft eq

< p = p > p

The indices from lo to left-1 are smaller than p.

The indices from left to eq-1 are equal to p.

The indices from eq to right are arbitrary.

The indices from right+1 to hi are greater than p.

Notice that some of these ranges can be empty (e.g., initially).

The while loop ends when the third range becomes empty.
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The Quicksort procedure

Quicksort takes an array a (in/out), two parameters lo and hi (in), and sorts it
between indices lo and hi.

procedure quicksort

if hi <= lo then terminate;

p,q := partition(a,lo,hi);

quicksort(a,lo,p);

quicksort(a,q,hi);
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Analysis of Quicksort

Let us regard the “tree” of procedure calls that occurs when Quicksort runs on a
particular array. I.e. if the Quicksort procedure is called with the range x , y and
calls itself recursively with x ′, y ′, then we draw an edge from x , y to x ′, y ′.

E.g., if Quicksort is used on an array of length 10, the call tree may look like this:

1,10

1,3 5,10

1,2 4,3

...

...
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Each partitioning takes linear time (in the size of its array slice).

Thus, the running time of Quicksort is proportional to the sum of the sizes of the
array slices that occur in the call tree.

Let us regard the case where all elements in the array are different. (This is the
worst case because each pivot is unique.) Then each call will “put” one element
into its correct position, and there will be n calls altogether.

The height of the call tree is at least (approximately) lbn and at most n.
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In the first case, each pivot is the median of the array values, so the partitions are
always equal (plus/minus one). Then the running time can be seen to be
O(n · log n).

In the latter case, the pivot is always the smallest or the largest element, so one
partition is empty and the other just one less than the original slice. Then the
running time is O(n2).

Thus, the worst case running time is O(n2).
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The role of non-determinism

The pivot is picked randomly (i.e., we pick any of the elements).

Therefore, it would be correct to pick, e.g., always the rightmost element of the
slice (i.e., deterministically).

But then, the algorithm behaves “badly” (quadratic) when used on arrays that are
already sorted. (Why?)

In fact, any deterministic strategy for picking the pivot has inputs that lead to a
quadratic running time.
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On the other hand, if we pick the pivot non-deterministically, then (depending on
the choices) every input can lead to either n log n or n2 running time.

On average, however, non-deterministic choice will partition the array with the
proportions 1 : 3. (Why?)

Then the depth of the call tree will be log4/3 n. Therefore, the running time is still
O(n log n) on average.

Note: We have loga n = loga b · logb n, i.e. for all n two logarithms with
bases a, b differ only by a constant factor. Therefore, Landau notation
abstracts from the logarithm base.
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Another look at worst-case/average complexity

Our algorithms have multiple possible inputs, and in non-deterministic algorithms
there may be multiple possible executions for every input, whereas in
deterministic algorithms there is just one execution for each input. Complexity
can be measured w.r.t. both quantities.

If A is some algorithm, let us denote by IA(n) the set of all (valid) inputs to A of
size n. (E.g., all arrays of size n for some sorting algorithm).

Now, if i is an input to algorithm A, then let RA(i) denote the set of all k such
that some execution of A on input i takes k steps. (For deterministic algorithms,
|RA(i)| = 1.)
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We can now denote the worst (resp. average) behaviour of A on i as the
maximum (resp. average) of the numbers in RA(i), denoted maxA(i) (resp.
avgA(i)). For deterministic algorithms, both conincide.

However, we are usually not interested in individual inputs, but some aggregate
measure over all inputs. The standard way to do this is to consider the worst
possible input. (E.g., the worst that some malicious adversary could do to
provoke a bad behaviour in A.)

This can be captured by the functions

fA(n) := max{max
A

(i) | i ∈ IA(n) } and gA(n) := max{ avgA(i) | i ∈ IA(n) }

Again, for deterministic algorithms, fA(n) = gA(n).
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If A is some deterministic version of Quicksort, we have both
fA(n), gA(n) ∈ O(n2).

If A is the non-deterministic version of Quicksort, we have fA(n) ∈ O(n2) but
gA(n) ∈ O(n · log n).

If A is Heapsort, we have both fA(n), gA(n) ∈ O(n · log n).

Summary:

Non-determinism is advantageous for Quicksort.

Non-det. Quicksort is slower than Heapsort only if we’re “unlucky”.

Det. Quicksort is slower than Heapsort if we are given a “difficult” input.
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A lower bound for sorting

We have seen that there are algorithms that take O(n log n) running time in the
worst case (e.g., Heapsort, Quicksort on average).

Question: Can we do better?
Answer: No (at least not in general)

To reason about this, let us make two assumptions:

We restrict the inputs to the case where all array elements are different. (The
above holds even with this restriction.)

We consider only algorithms that work with comparisons to determine the
relative order of elements. (This is a proper restriction. But all known
algorithms that work differently have other restrictions.)
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Any sorting algorithm (under the above restrictions) needs to distinguish n!
different relative orderings of its inputs.

Every comparison excludes at most half of the relative orderings.

Thus, every algorithm needs to make at least lb n! comparisons.

Using Stirling’s inequality (n! ≥ nn/2) we get lb n! ∈ O(n log n).

Therefore, an algorithm like Heapsort is asymptotically optimal under the given
assumptions.
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Sorting in less than n log n time

The lower bound shown on the previos slides holds under the given assumptions
(i.e. all we know is that the array elements are all different).

If we have additional knowledge about our input, we can design algorithms with
better running times. (But they will work correctly only if the “additional
knowledge” holds.)

We shall look at examples of such “special-case” algorithms:

Counting Sort

Radix Sort
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Counting Sort

Counting Sort works under the following assumptions:

The size of the array a to be sorted is n.

The elements in the array are all in the range from 1 to k .

The algorithm works as follows:

It uses an array b with indices 1 . . . k . All elements are zero initially.

It traverses the elements of a once; every time it sees an element with value i ,
it increases b[i].

After this, it fills a from left to right with b[i] elements of value i each.

Running time: O(n + k) (linear!)
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Parameters are array a (in/out) and k,n (in).

procedure countingsort

for i = 1 to k do b[i] = 0 od;

for i = 1 to n do b[a[i]] = b[a[i]] + 1 od;

j = 0;

for i = 1 to k do

for ` = 1 to b[i] do

j = j + 1;

a[j] = i

od

od
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Radix Sort

Radix Sort works under the following assumptions:

The size of the array a to be sorted is n.

The elements in the array are all in the range from 0 to 2k − 1.

The algorithm works as follows:

It uses an array b with indices 1 . . . n.

It traverses the elements of a once and fills b “from the margins”; every
element whose most significant bit is 0 is put to the left, and to the right
otherwise.

Then, the two partitions of b are sorted recursively according to the second
most significant bit and so forth.

Running time: O(n · k)
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To give an algorithm that implements Radix Sort, we assume an auxiliary
procedure radix aux (given on the next slide), which takes five parameters:

an array a (in/out);

indices lo, hi (in);

numbers upper, lower (in).

Pre-condition: In the slice from index lo to hi, a contains elements whose
values are at least lower and at most upper.

On return from radix aux, a is sorted between the indices lo and hi.

Then Radix Sort can be implemented by a procedure call
radix aux(a,1,n,0,2k − 1).
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procedure radix aux

if lo >= hi then return fi;

if upper = lower then return fi;

k = lo-1; ` = hi+1; mid = (lower+upper)/2;

for i = lo to hi do

if a[i] <= mid then

k = k + 1; b[k] = a[i]

else

` = ` - 1; b[`] = a[i]

fi

od

radix aux(b,lo,k,lower,mid);

radix aux(b,`,hi,mid+1,upper);

for i = lo to hi do a[i] = b[i] od
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Final notes about sorting algorithms

We discussed methods that work with comparisons only, and some special ones.
We also discussed some programming paradigms (such as recursion,
divide-and-conquer, non-determinism).

For comparison algorithms, we cannot do better than O(n · log n). With special
knowledge about the inputs, we can do better.

Notice that comparison algorithms do not “compute” with the array elements. All
they need to work is that array elements are comparable. Thus, comparison
algorithms work even on non-numeric data for which there exists some total
ordering (e.g., names).
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Part 3: Searching
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Searching

In general, searching is the following problem:

We are given a collection of data items (e.g., a set of numbers) and a
so-called key value (or just: key). We want to know whether the key is
contained among the data items.

Example: An array of integers and an integer value as key.

We will consider this problem in arrays and other data structures (such as trees).
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Searching in arrays

Input: an array a of integers (range 1..n, in-parameter) and an integer k (in).

Return value: an index i s.t. a[i]=k, or special value NIL

procedure array search

for i = 1 to n do

if a[i] = k then return i fi

od;

return NIL

Complexity (worst-case): O(n)
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Search in sorted arrays

Inputs and return values as before, but we assume that a is sorted in ascending
order. Then we can stop searching as soon as the array elements get bigger
than k.

procedure array sorted search

for i = 1 to n do

if a[i] > k then return NIL fi;

if a[i] = k then return i fi

od;

return NIL

Complexity (worst-case): still O(n)!

81



Binary search

Searching a sorted array in linear order isn’t smart - if we ask (unsuccessfully)
whether the key is in the first element, we must look for the key in the remaining
n − 1 elements.

Starting in the middle is much smarter - it eliminates half the indices at once!
(Think of searching in a telephone directory...)

The next slide shows a searching algorithm (working on a sorted array) that takes
O(log n) steps by applying the “starting in the middle” principle recursively!

So searching in sorted arrays can be much quicker (which is why telephone
directories are sorted...)
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procedure binary search

lo = 1; hi = n;

while lo <= hi do

mid = (lo+hi)/2;

if a[mid] = k then return mid fi;

if a[mid] < k then lo = mid+1 fi;

if a[mid] > k then hi = mid-1 fi;

od;

return NIL
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Derived data structures

In the following, we work with basic data types (integers, for now) and derived
data types.

Derived data types are:

arrays (an array of T , where T is some data type, with a given range of
indices, as before);

records (a collection of data items belonging to some “logical” object);

pointers (a pointer to T , where T is some data type, an “edge” to some piece
of data).

Variables can be of basic or derived types.

Using this, we can enrich our vocabulary for expressing algorithms. Each
expression is of some type. Assignments x = E make sense only if both x and
E have the same type.
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Records

A record is type. It is a collection of data items that logically belong together.

Each item has got a name and a type.

For instance, we can define a type for coordinates in two-dimensional space
consisting of two data items: two integers with names x and y . Let’s call this
type TwoD.

If r is a record and n the name of some item in r (of type T ), then r .n denotes the
corresponding data item. The expression r .n has type T .

Records can be nested, e.g. some item of a record may of a (different) record
type.
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Pointers

A pointer is an “edge” pointing to some object (e.g., some variable) in memory.
The A pointer is parametrized by a type (the type of the variable it points to).

(In most computer architectures, a pointer is simply a variable containing a
memory address. Accordingly, the “value” of a pointer is the object it points to –
not the value of that object.)

A special value for pointers is NIL, meaning that the pointer points to “nothing”.

A pointer can be to any type (basic, array, record, or some other pointer).
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Working with pointers

When using pointers, we distinguish carefully between the pointer itself and the
object it points to.

If p is a pointer, then p denotes the pointer itself. Assigning to p makes the
pointer point to something else (e.g., p = NIL).

If p is a pointer, then p→ denotes the object that p points to. Assigning to p→
changes not p, but the object to which p points. Examples:

if p is a pointer to integers, then p→ = 5 changes the variable pointed to by
p to 5.

If p is a pointer to TwoD, then p→.x = 5 changes the x-element of the
coordinate to 5.

Careful: if p is NIL, then p→ is undefined.
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Creating pointers

If x is a variable of type T , then →x is of type “pointer to T ”. Its value is the
object x .

If T is a type, then the expression new T will create a “fresh” object of type T in
memory (whose value is undefined). The type of the expression will be “pointer
to T ”.
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Binary trees

In the following, we will consider searching in binary trees. Trees consist of
nodes, which are labelled with some number and have at most two children.

For these purposes, we’ll define a data type called BinNode. It is a record with
three items:

value, an integer;

left , a pointer to BinNode;

right , another pointer to BinNode.
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Example: Let p be a pointer to BinNode. We create a new node with value 5

without any children:

p = new BinNode;

p→.value = 5;

p→.left = NIL;

p→.right = NIL

Now, let n be some BinNode. Setting n.left=p will make p→ the left child node
of n.
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Searching in binary trees

We define an algorithm for searching in binary trees. Its arguments are p (a
pointer to BinNode) and k (an integer, the key).

We assume that the objects reachable from p (directly or transitively) form a finite
binary tree consisting of BinNode objects (i.e., no cycles, no infinite paths). We
assume that the tree is ordered, i.e. for every node n of the tree, the following
holds: all nodes reachable via n.left (resp. n.right) have smaller (resp.
bigger-or-equal) values than n.value.

If k is contained in the tree, our algorithm returns a pointer to a node whose
value is k . Otherwise, it returns NIL.
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procedure binary tree search

while p 6= NIL do

if p→.value = k then return p fi;

if p→.value < k then p = p→.right else p = p→.left fi;

od;

return NIL

The worst-case running time of this algorithm is proportional to the longest path
(to the “deepest” leaf) in the tree.
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Maintaining trees

How can we create such binary trees? Let us define an algorithm that does the
following:

It takes two parameters, p and k , with the same assumptions as in the previous
case, but this time p is an in-out parameter.

It extends the tree starting at p with another BinNode, whose value is k . This
new node is a “leaf” in the tree, and it is inserted at the “correct” place in the tree,
so that it remains ordered (in the aforementioned sense).
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Let q be a pointer to pointer to BinNode.

procedure binary tree insert

q = →p;

while q→ 6= NIL do

if k >= q→→.value then q = q→→.right else q = q→→.left fi;

od;

q→ = new BinNode;

q→→.value = k;

q→→.left = NIL;

q→→.right = NIL
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Note: The shape of the tree generated by the previous algorithm depends
entirely on the order in which elements are inserted.

E.g., if the elements are inserted in ascending order, the tree will be “lopsided”
(essentially, a list).

Such a lopsided tree will create bad running times for searching and inserting.

Ideally, we would want to create “perfectly balanced” trees, i.e. where the depth
of a tree with n nodes is dlog2 ne.

However, balancing trees perfectly may be a costly operation. In the following,
we will create an insertion operation that limits the amount of lopsidedness to
create “reasonably” balanced trees with little overhead.

95



AVL trees

An AVL tree is a binary tree with the following additional balancing property:

Let n be any node in the tree, and `, r the height of its left and right
subtrees (where the height of the tree is the length of its longest path, and
the length of a path is the number of nodes in it). Then ` and r differ by at
most one.

For our purposes, we assume that AVL trees consist of records of type
BinHNode, which are like the BinNode type, but with an additional integer item
called height .
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Inserting into AVL trees

A procedure for inserting nodes into an AVL tree differs from the previous
procedure (binary tree insert) in two respects:

The procedure needs to update the height of the tree.

Inserting a node may violate the balancing property, in which case the
property must be restored.

We will tackle these two problems separately. It will be more practical do use a
recursive procedure.

Our procedure for inserting into AVL trees takes two parameters, p (pointer to
BinHNode, pointing to the tree root) and k (the key to be inserted). Both are in
parameters. The procedure returns a pointer to the (possibly new) root of the
tree.
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Insertion procedure (incomplete)

procedure avl tree insert

if p = NIL then

p = new BinHNode;

p→.value = k; p→.height = 1;

p→.left = NIL; p→.right = NIL;

return p

fi;

if k >= p→.value

p→.right = avl tree insert(p→.right,k)

else

p→.left = avl tree insert(p→.left,k)

fi;

Update the tree height (to be specified)

Re-balance if necessary (to be specified)

return p
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Updating tree height

Updating the tree height is simple: Measure the height of the left and right
subtree and add one.

if p→.left = NIL then lh = 0 else lh = p→.left→.height fi;

if p→.right = NIL then rh = 0 else rh = p→.right→.height fi;

p→.height = 1 + max(lh,rh);
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Re-balancing a tree

Assume that the balance property holds in p before we insert a new node into
the tree starting at p. Then, if the balance property is violated afterwards, the
height of the left and right subtrees differs by exactly two.

In the following, we assume that the height of the left subtree is bigger than that
of the right subtree (the other case is analogous). There are two situtations:

Case 1: The “left-left” subtree is higher (by one) than the “left-right” subtree.

Case 2: The “left-right” subtree is higher (by one) than the “left-left” subtree.
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Case 1:

In Case 1, the situation can be redressed by making the red node the new root of
the tree:

p

height:

  n − 1

height:
  n − 1

height:

  n

p

Notice that this change preserves the order of the tree.
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Case 2:

In Case 2, we make the brown node (the root of the left-right subtree) the new
root. One of the brown subtrees is of height n − 1, the other of height n − 2.
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Algorithm for Case 1

blue = p;

red = p→.left;

brown = p→.left→.right;

red→.right = blue;

blue→.left = brown;

p = red

Also, the heights of red and blue need to be updated, as discussed before.

The algorithm for Case 2 is analogous.
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Height of AVL trees

Consider an AVL tree of height n. We shall prove that the height of such a tree is
Θ(log n). (From this it follows that searching and inserting into an AVL tree with
n nodes takes Θ(log n) times.)

Minimal height of AVL trees:

Consider an AVL tree of height k . Then the tree contains at most 2k − 1

nodes.

Proof: easy, by induction.

Therefore, an AVL tree with n nodes has at least a height proportional to
log n.
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The maximal height of AVL trees is related to the Fibonacci numbers, defined as
F0 := 0, F1 := 1, and Fk+2 := Fk + Fk+1 for k ≥ 0.

Consider an AVL tree with height k . We prove (by induction) that it contains at
least hk := Fk+2 − 1 nodes.

It is immediate to see that h1 = 1 and h2 = 2.

For k ≥ 3, we have that one of the subtrees is at least of height k − 1, the other
of height at least k − 2. Therefore, hk = hk−2 + hk−1 + 1 = Fk+2 − 1.

It is known that Fk is proportional to some constant to the power of k .
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Part 4: Graphs
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Graphs

A graph is a collection of nodes (also called “vertices”) together with a collection
of edges connecting the nodes.

a

b

c d

3

4
2

1

Graphs can be either directed or undirected, meaning that the edges have (or do
not have) a “direction”. In the figure above, the left is an undirected graph with
the set of nodes {a, b, c, d}, the right is a directed graph with nodes {1,2,3,4}.

Undirected edges can be understood as a connection that goes “either way”,
whereas a directed edge means that one can go from one node to the other but
not vice versa.
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Mathematical notation

Mathematically, a graph is a tuple (V , E), where V is the set of nodes (vertices),
whereas E is the set of edges.

In undirected graphs, the nodes touched by an edge have the same “priority”,
therefore we denote edges by {u, v}, where u, v are nodes. (Notice that
{u, v} = {v , u}.) In the example, the set of edges is

{
{a, b}, {b, c}, {c, d}

}
.

In directed graphs, the direction matters, therefore we denote edges as tuples,
with the source node first, e.g. (u, v)}. In the example, the set of edges is{
(1,2), (2,3), (1,4)

}
.

Note: Binary trees are directed graphs.
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Mathematical notation vs graphical display

In the mathematical notation, it only matters which nodes are there and which of
them are connected.

A graphical notation adds topological information, i.e. where nodes are located.
However, we consider this information “unimportant”, i.e. just for convenient
visualization. The following two graphs are considered the same:

a

b

c d

b

a

c

d
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Adjacency and incidence

Let G = (V , E) be an undirected graph.

We call nodes u, v ∈ V adjacent iff {u, v} ∈ E .

We call nodes u ∈ V and edge e ∈ E incident iff u ∈ E .

We call edges e, f ∈ E adjacent iff e ∩ f 6= ∅.

We call an edge e ∈ E a loop iff e = {u} for some node u.
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Neighbourhood

Let G = (V , E) be an undirected graph without loops.

The neighbourhood of node v ∈ V is the set of adjacent nodes:
N(v) := { u | {u, v} ∈ E }.

|N(v)| is called the degree of v , written deg(v).

In the previous example, the degree of a, d is 1, that of b, c is 2.

Fact: It holds that
∑

v∈V deg(v) = 2 · |E |.
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Euler paths and circles

Let G = (V , E) be an undirected graph without loops.

An Euler path is a sequence of adjacent edges containing each edge in E exactly
once. An Euler circle is an Euler path starting and ending at the same node.

If a graph has an Euler path, it can be drawn “in one stroke”. The left figure below
has an Euler circle, the one in the middle an Euler path, but not an Euler circle,
and the one on the right does not have an Euler path.

a

b

c

b

a

c

d
d

e
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It can be shown that the existence of Euler paths and circles is tied to the
distribution of degrees of the nodes.

Suppose that a graph has an Euler circle. Then every node must have even
degree (it is touched an even number of times).

Suppose that a graph has an Euler path, but not a circle. Then exactly two nodes
have odd degrees (the start and the end node) and all others have even degrees.

Suppose that a graph has more than two nodes with odd degrees. Then no Euler
path or circle can exist.
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Connectedness

An undirected graph is called connected if from every node one can reach every
other node via zero or more edges. All graphs shown so far were connected.
The one below is not, it is said to have two components.

b

a

c

d

e
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Finding Euler circles

Let G = (V , E) be a connected undirected graph without loops where every
node has even degree.

We show how to construct an Euler circle in G.

Start at an arbitrary node v and select arbitrary adjacent edges until you
come back to v . The result is a circle (which does not necessarily contain all
edges).

Remove the selected edges from the graph. In the resulting graph, every
node still has even degree (why?). Therefore, select some node u along the
selected circle with non-zero degree and find a new circle using the previous
step. “Insert” this circle into the first circle and repeat.
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Data structures for graphs

In the following, we concern ourselves with algorithms for directed graphs.

For simplicity, we shall assume that graphs have nodes {1, . . . , n}, for some n.

An edge can be represented by a record type with items src,dst. An edge
(u, v) is represented by a record where the src item is u and the dst item is v .

For each node u, we will often require its list of neighbours, i.e. the nodes v such
that (u, v) is an edge. For this, we extend the record with another item called
next, a pointer to another edge. The resulting record type is called Edge.
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If we have a directed graph with n nodes, then we assume the existence of an
array E with indices 1 . . . n whose entries are pointers to type Edge.

Then the neighbours of node i can be traversed as follows:

p = E[i];

while p 6= NIL do

j = p→.dst;

· · ·

p = p→.next

od

Here, p is assumed to be a pointer to type Edge. In every iteration, j is a node
such that (i, j) is an edge.

In the following, we shall abstract from this notation an simply write for j in

N(i) do ... od as an abbreviation.
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Traversing graphs

A traversal of a graph is (informally) a procedure that visits all nodes of a graph
once.

Two well-known traversal strategies are:

breadth first: visit some node, then visit all of its neighbours, after that the
neighbours of the neighbours and so forth.
Applications: finding shortest paths, . . .

depth first: visit some node, then visit one of its neighbours, one of the
neighbours of that neighbour etc.
Applications: topological sorting, finding components, . . .
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Depth-first search

Assume that we have a directed graph with n nodes, named 1 . . . n.

We discuss two procedures, called dfs pre and dfs post. Both takes the
graph and perform a depth-first search on it.

All nodes receive a number. The numbers are written into an array dfsnum, i.e.
dfsnum[i] containes the number of the node i . We assume that initially
dfsnum is filled with zeros.

If the number is given to a node before the neighbours are considered, we call
this pre-order numbering. If the number is given after the neighbours are
considered, we call it post-order numbering.

We make use of an auxiliary procedure, which takes an in-parameter i, and an
in-out parameter counter.
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Algorithm for pre-order numbering

procedure dfs pre

counter = 0;

for i = 1 to n do

if dfsnum[i] = 0 then dfs pre aux(i,counter) fi

od

procedure dfs pre aux

counter = counter + 1;

dfsnum[i] = counter;

for j in N(i) do

if dfsnum[j] = 0 then dfs pre aux(j,counter) fi

od
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Running example

a

b

g h

c

i

d

j

e

k

f

l

Here’s an example of a directed graph.
Note: Nodes labelled with letters a . . . l instead of numbers 1 . . .12 (for better
distinction from the dfs numbers, shown in the next slide).
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Pre-order numbering (1)

a

b

g h

c

i

d

j

e

k

f

l

1

2

3 4

5 8

6 7 10

9 12

11

The blue numbers are the contents of dfsnum array after the dfs procedure.
Note: The algorithm is not completely deterministic if we assume that for j in

N(i) can visit neighbours in any order.
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Pre-order numbering (2)

a

b

g h

c

i

d

j

e

k

f

l

1

8

5 4

7

3 6 10

9 12

11

2

Another possible numbering if neighbours are visited in different order.
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Pre-order numbering (3)

a

b

g h

c

i

d

j

e

k

f

l

12

11

9 8

5

7 4

3 2

1

10

6

Suppose that the for i... loop also visits nodes in any order (rather than
strictly from 1. . . n, or alphabetically in this case). Then the above numbering is
also possible.
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Algorithm for post-order numbering

procedure dfs post

counter = 0;

for i = 1 to n do

if dfsnum[i] = 0 then dfs aux(i,counter) fi

od

procedure dfs post aux

dfsnum[i] = -1;

for j in N(i) do

if dfsnum[j] = 0 then dfs aux(j,counter) fi

od

counter = counter + 1;

dfsnum[i] = counter;
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Post-order numbering

a

b

g h

c

i

d

j

e

k

f

l

8

3

2 1

7 4

6 5 11

12 9

10

Post-order numbering if nodes are visited in the same order as in the first
pre-order numbering.
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Applications of depth-first search

We will consider two applications of depth-first search.

topological sorting

strongly-connected components

Both make use of post-order numbering.
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Topological sorting

Abstractly speaking, topological sorting is the task of refining a partial order into
a total order.

Example: Imagine a “to-do list” with several items.

buy drinks

buy a mop

buy a new pen

give a party

clean the house

do homework

There are dependencies between some of these items, for instance one would
buy drinks before giving a party.
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Dependency graph

homework

clean housebuy pen

party

buy mop

buy drinks

Dependencies expressed as a graph, where an arrow from item A to item B
means that B must be done before A. Note that there are no cyclic dependencies!
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Acyclic graphs and partial orders

A directed graph is called acyclic if for any two different nodes v , w we have the
following: if v is reachable from w , then w is not reachable from v .

Example: see previous slide

Let M be a set. A partial order ≺ on M is a binary relation between elements of
M with the following properties: for all a, b, c ∈ M:

a ≺ a (reflexivity);

a ≺ b implies b 6≺ a (anti-symmetry);

a ≺ b and b ≺ c imply a ≺ c (transitivity).

However, a partial order is not necessarily total, i.e., it may contain incomparable
elements, that is, pairs a, b with neither a ≺ b nor b ≺ a.

Example: For any set S, the subset relation is a partial order on the powerset of
S.
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The reachability relation on acyclic graphs is a partial order between the nodes,
given by v ≺ w if v is reachable from w .

Likewise, every partial order corresponds to an acyclic graph.

Thus, we can equate partial orders and acyclic graphs.

Let G be a directed graph. We denote by GR the graph obtained by reversing the
direction of all edges in G.

If G is acyclic, then GR is also acyclic, and corresponds to the reverse partial
order.
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Post-order numbering on acyclic graphs

Any post-order numbering on a directed graph has the following property:

If v is reachable from w but not vice versa, then the dfs number of v will
be smaller than the one of w .

Proof: Either dfs post aux(v) is called before dfs post aux(w). Then,
since w is not reachable from v , dfs post aux(v) will terminate and assign a
number to v before considering w . Or, in the other case, since v is reachable
from w , the recursive calls will reach v (and assign a number to it) before
returning to w .

In other words, post-order numbering provides a total order that refines the
partial order associated with the graph, i.e. v ≺ w implies
dfsnum[v] < dfsnum[w] (but not vice versa).
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To-do list revisited

homework

clean housebuy pen

party

buy mop

buy drinks

1 6

23

4 5

A possible post-order numbering of the to-do-list graph. Doing things in the given
order will ensure that all dependencies are resolved correctly.
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homework

clean housebuy pen

party

buy mop

buy drinks

1 5

64

2 3

Another possible post-order numbering.
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Strongly connected components

Let G = (V , E) be a directed graph (not necessarily acyclic). A set of nodes
C ⊆ V is called a strongly connected component (SCC) of G if

(1) for all nodes v , w ∈ C, it holds that v is reachable from w (and vice versa);

(2) C is maximal w.r.t. (1), i.e. no further node can be added to C without
violating property (1).

Note: SCCs are a partioning of the nodes, i.e. each node belongs to exactly one
SCC. The graph GR has the same SCCs as G.

The relation given by v ∼ w if v , w are in the same SCC is an equivalence
relation (reflexive, symmetric, transitive).

The relation between SCCs given by C1 ≺ C2 if nodes in C1 are reachable from
nodes in C2 is a partial order.
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SCCs: Example

a

b

g h

c

i

d

j

e

k

f

l

In this example, SCCs are indicated by colours. Nodes in the same SCC have
the same colour. Nodes a and b form an SCC by themselves.
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SCCs: Example

a

b

g h

c

i

d

j

e

k

f

l

Partial ordering of SCCs: red ≺ green, green ≺ brown etc.
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Roots

For a given post-order numbering, the root of an SCC is the node with the
largest number within the SCC.

This means that the root of an SCC is the node that is visited first (and left last)
by the dfs procedure.

Let C1, C2 be two SCCs such that C1 ≺ C2. Then the root of C2 has a bigger
number than the one of C1.

138



Post-order numbering

a

b

g h

c

i

d

j

e

k

f

l

8

3

2 1

7 4

6 5 11

12 9

10

Same post-order numbering as before, roots indicated by thick lines.
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Algorithm for finding SCCs

Let v , w be two nodes of a graph G. If v can be reached from w in both G and
GR, then v and w are in the same SCC.

Using this, we now give an algorithm for identifying all SCCs of a given graph G.
It consists of the following steps:

Perform any post-order numbering on G, sort the nodes in descending order,
and generate the graph GR.

While the graph GR still contains nodes, do the following:

Find the node r with the highest number still in GR. (This must be a root!)

Find all nodes reachable from r in GR (using depth-first or breadth-first
search). Remove all these nodes from GR. All removed nodes are one
SCC.
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Example

a

b

g h

c

i

d

j

e

k

f

l

8

3

2 1

7 4

6 5 11

12 9

10

The graph GR with a post-order numbering of G.
Root nodes will be considered in the order e, a, c, b, g.
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Running the algorithm (1)

a

b

g h

c

i

d

j

e

k

f

l

8

3

2 1

7 4

6 5 11

12 9

10

Finding and removing the nodes reachable from e identifies the blue SCC.
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Running the algorithm (2)

a

b

g h

c

i

d

j

8

3

2 1

7 4

6 5

From a no other node is reachable, so a is an SCC unto itself.
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Running the algorithm (3)

b

g h

c

i

d

j

3

2 1

7 4

6 5

The green SCC is found and removed next, starting from c.
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Running the algorithm (4)

b

g h

3

2 1

b is again an SCC in its own right.
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Running the algorithm (5)

g h
2 1

Finally, only the red SCC is left over.
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Correctness and complexity

The root with the largest number belongs to a maximal SCC (w.r.t. ≺) in G, and
thus a minimal SCC of GR.

Remember that a minimal SCC is one that can be reached from other SCCs but
cannot reach any others. Therefore, the nodes reachable in GR from its root all
belong to that SCC.

After removing the SCC, the next-largest number belongs to an SCC that is now
minimal w.r.t. the reduced version of GR, and so forth.

Complexity: Every node and every edge are touched exactly twice by the
algorithm, i.e. its run-time is O(|V |+ |E |).
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Breadth-first search

Recall the principle of breadth-first search (BFS):

visit some node, then visit all of its neighbours, after that the neighbours of
the neighbours and so forth.

In the following, we discuss a simple algorithm that performs a BFS on a directed
graph and orders nodes in the order it visits them. The following assumptions are
made by the algorithm:

The graph has n nodes, numbered 1 . . . n.

The search procedure starts at node 1.

All nodes are reachable from node 1.
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Example

7
11

3

9

6

2 4

1

10

12

8

5

Here’s an example of a BFS numbering, starting at the blue node.
We shall see shortly how this numbering was created.

149



Breadth-first search

Recall the principle of breadth-first search (BFS):

visit some node, then visit all of its neighbours, after that the neighbours of
the neighbours and so forth.

In the following, we discuss a simple algorithm that performs a BFS on a directed
graph and orders nodes in the order it visits them. The following assumptions are
made by the algorithm:

The graph has n nodes, numbered 1 . . . n.

The search procedure starts at node 1.

All nodes are reachable from node 1.
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Algorithm for BFS

procedure bfs
for i = 1 to n do bfsnum[i] = 0 od;

bfsnum[1] = 1; order[1] = 1;

visited = 0; counter = 1;

while visited < counter do

visited = visited + 1;

i = order[visited];

for j in N(i) do

if bfsnum[j] = 0 then

counter = counter + 1;

bfsnum[j] = counter;

order[counter] = j;

fi

od

od
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Notes on the BFS algorithm

The BFS algorithm uses two arrays:

bfsnum: initialized to all zeros; afterwards, bfsnum[i] contains the BFS
number of node i.

order: filled in such a way that order[i] contains the number of the node
with BFS number i

At the end, the two arrays are “inverse”, i.e. if bfsnum[i]=k, then order[k]=i.
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Running example

j

c

d

b

g
i

h

e

f

l
k

a

We shall use this graph as a running example. Again, the nodes are numbered
a..l here instead of 1..12, so that we can more clearly distinguish between node
numbers and their BFS numbers.
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BFS numbering on the example

j

c

d

b

g
i

h

e

f

l
k

a

a

order:

1

Initially, only the first node (here called a instead of 1) gets its BFS number.
Assigned BFS numbers shown next each node, and the (partially determined)
contents of order below the graph.
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BFS numbering on the example

a

a

b

g
i

d

k
l

f

j

c

h

e

j c h e
order:

1

2

3
5

4

The while loop visits a first, gives numbers to its neighbours (in any order) and
puts them into the order array.
blag
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BFS numbering on the example

a

a

g
i

d

k
l

f

c

h

e

c

j

j

b

bh e
order:

1

3

2

6

4

5

Visited nodes (i.e., nodes whose neighbours have been explored) are shown in
red here. “Front” nodes (i.e., nodes with a BFS number that have not yet been
visited) are shown in blue. The situation above arises after visiting j .
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BFS numbering on the example

a

a

g
d

k
l

e

j

j

b

b

c

h

f

i i fc h e
order:

1

2

6 3

7

5

4

8

When c and h are visited next, the BFS numbers of b and e are left unchanged,
only i and f get fresh numbers.
blag
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BFS numbering on the example

a

a

j

j

c

h

c h

b
e

f

i e b i f

g
d

k
l

d k g l
order:

1

2

3

4

9

10

12

8

7
11

6 5

Situation after visiting the nodes that were previously front nodes; now all nodes
are numbered. . .
blag
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BFS numbering on the example

a

a

j

j

c

h

c h

b
e

f

i e b i f

g
d

k
l

d k g l
order:

1

2

3

4

8

7
11

6

9

10

5

12

. . . so the final four visits do not change anything, and we end up with the
numbering shown initially. Notice how the BFS numbers increase with growing
distance to a.
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BFS numbers and distance

c

i
g

b

j

a

d

e

h

k
l

f

7
11

6

2

3

1

9

4

5

10

12

8
0

1

1

1

1

2

2

2

2

3

2

3

Above, the lengths of the shortest paths from a to all other nodes (measured in
terms of edges) are shown in green. Indeed, we see that if some node is closer
than another to a, then that node has a smaller BFS number than the other.
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Computing distances

Remark: We could define a partial order between nodes given by u ≺ v iff u has
a shorter distance to a than v . Then BFS numbering refines this partial ordering
into a total ordering.

The distances shown in the previous slide can be computed by a small
modification of the BFS algorithm (shown on the next slide). Instead of BFS
numbers, that algorithm maintains an array distance.

The distance algorithm maintains the following invariant in its while loop:

All visited nodes and all front nodes have the correct distance assigned to
them.

None of the unexplored nodes is closer to a than any of the visited or front
nodes.
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Algorithm for computing the distances

procedure distance
for i = 1 to n do distance[i] = ∞ od;

distance[1] = 0; order[1] = 1;

visited = 0; counter = 1;

while visited < counter do

visited = visited + 1;

i = order[visited];

for j in N(i) do

if distance[j] = ∞ then

distance[j] = distance[i] + 1;

counter = counter + 1;

order[counter] = j;

fi

od

od
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Shortest-path problems

We shall now generalize the problem of computing distances.

Previously, we measured the length of a path as the numbers of edges in it,
i.e. all edges had the same “weight” of 1.

Now, let us assume that edges may have different “weights”. These can
represent distances, time, costs etc.

We assume that weights are non-negative numbers.
(In the following, only natural numbers are used as weights. However, the same
principles apply to real numbers.)

163



The shortest-path problem then is:

Given some directed graph with non-negative weights on the edges and a
node u in it, compute the lengths of the shortest paths from u to all other
nodes, where the length of a path is taken as the sum of the weights of
the edges in it.

Applications: Finding the shortest route to some target, minimal-cost actions, . . .
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Running example with weights

c

i
g

b

j

a

d

e

h

k
l

f
2

2

4

1

1

4
3

2

1

3

3

2

3

3

2

4

Here’s the running example again, this time with some weight attached to each
edge. We shall compute the shortest distances starting from a.
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Some observations

i
g

b

a

d

e

h

k
l

f

c

j

2

1

3

2

1

3

3

2

3

3

2

4

2

4

41

Notice how there different paths from, e.g., from a to b, can have different
lengths. Here, the red path has length 5, whereas the blue path has length 6.
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Some observations

i
g

b

a

d

e

h

k
l

f

c

j

2

1

3

2

1

3

3

3

3

2

4

2

4

41

2

Since we have x + z < y + z iff x < y , we can determine the shortest path to g
by determining the shortest path to b first. This suggests that we should still
employ some “BFS-like” principle.
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Some observations

i
g

b

a

h

k
l

f

c

j

d

e
2

1

3

3

3

3

2

4

2

1

4

2
2

1

4

3

It may be the case that a path with more edges in it is still shorter than a path
with fewer edges. Here, the blue path is shorter than the red one despite
containing more edges.
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Towards an algorithm

We shall modify the previous distance algorithm to solve the shortest-path
problem.

Most elements remain the same:

We still distinguish visited nodes, front nodes, and unexplored nodes.

Nodes are still visited in increasing order of distance, starting at a.

Distances “carried forward” from one node to its neighbours.

There are also some changes:

The distance of a node may be updated more than just once, i.e. we may find
one path and afterwards another, shorter path.

For this reason, the order of the front nodes may change in between.

We pick a front node with minimal distance to visit next.
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Computing distance: Example

c

i
g

b

j

d

e

h

k
l

f
a

2

2

4

1

1

4
3

2

1

3

3

2

3

3

2

4

0

Initially, only a is a front node, with distance 0. Nodes where no distance is
shown are “unexplored” and still have distance ∞ assigned to them.
blag
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Computing distance: Example

i
g

b

d

k
l

f
a

c

j

e

h

1

1

4

2

1

3

3

2

3

3

2

4

0

4

2 3

2

2

4 2

3

Situation after visiting a. Its neighbours have been assigned (preliminary)
distances and have been made front nodes. We next pick a front node with
minimal distance, i.e. either j or e, in either order.
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Computing distance: Example

i
g

l

f
a

c
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e
b

k

d
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1

1

3

3

2

3

2

4

0
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2 3
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3
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4

5

4

After visiting both j and e, the front node with minimal distance is h.
blag
blag
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Computing distance: Example

i
g

l

a

c

j

e
b

k

d

f

h

1

1

3

3

2

3

4

0

4

2 3

2

2

4 2

3

2

3

6

4
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2 5
4

Visiting h will make f a front node. The distance of e remains unchanged
because the path to it via h is longer than the previously found path.
blag
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Computing distance: Example

g

l
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However, visiting c next will cause the distance of b to be updated because the
newly-found path is shorter than the previous one.
blag

174



Computing distance: Example

g

l
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Likewise, visiting d will update the distance of i to 5.
blag
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Computing distance: Example

l
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The final result is shown above.
blag
blag
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Dijkstra’s Algorithm

The method we just used for obtaining the lengths of the shortest paths is also
called Dijkstra’s algorithm, after its inventor. It is summarized in full below.

1. Initially, all nodes are unexplored and have distance ∞.

2. Make u a front node with distance 0.

3. If no front nodes are left, terminate.

4. Pick v among the front nodes with minimal distance and make v a visited
node.

5. For all neighbours w of v , if the currrent distance of w is larger than the
distance of v plus the weight of the edge from v to w , then update the
distance of w to the latter and make w a front node.

6. Continue at step 3.
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Correctness of Dijkstra’s algorithm

The invariants maintained by Dijkstra’s algorithm are just a little different from our
previous distance algorithm:

All visited nodes have the correct shortest distance assigned to them.

The distance assigned to all front node is the length of the shortest path
among those that use only visited nodes.

There is no path to any unexplored node using only visited nodes.

The correctness of the algorithm follows from this invariant.

In particular, it follows from the invariant that the front node with minimal distance
must have the correct shortest distance. (Why?)

The correctness arguments hinge vitally on the fact that there are no edges with
negative weights. (What would happen otherwise?)
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Complexity of Dijkstra’s algorithm

Dijkstra’s algorithm visits each node and every edge exactly once, contributing
O(|V |+ |E |) time if run on a directed graph G = (V , E).

Picking a front node with a minimal distance takes some effort, too. If the front
nodes are organized in a heap (cf. the Heapsort algorithm), then picking the
minimal-distance node is trivial. However, removing a node from the heap and
inserting one takes at worst O(log |V |) time (although usually, there are far
fewer than |V | front nodes in the heap).

Still, the worst case complexity is O((|V |+ |E |) · log |V |).
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Directed search

Dijkstra’s algorithm computes the shortest distance from a given node u to all
other nodes.

Suppose that we are only interested in the distance between two nodes u and v .

Obviously, Dijkstra’s algorithm could be used for this; start at u and abort when v
is about to be visited.

However, the BFS principle explores in all directions at once from u. It may
explore many nodes which are not “relevant” in order to reach v .

Therefore, we may want to optimize the procedure in order to find the shortest
path to v more quickly. This is called directed search.

180



Example

A

DO

UL

RT

MM
LL

R

RO SL

IN
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M
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70

85
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90

100

70 60

95

70

40

50

60

40
90

110

75

70

100

Suppose that you want to ride from Munich (M) to Stuttgart (S).
Intuitively, you would limit your attention to paths that approximately in the right
direction and ignore others.
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Using intuition

When searching in this intuitive way, we are using some heuristic that takes into
account additional knowledge about the situation. In the example, our additional
knowledge is that we are searching a “real” map.

For instance, we “know” that going via Salzburg will be no good because it is
farther away from Stuttgart than even Munich. I.e., we already have some
estimate how far it will be from Munich resp. Salzburg to Stuttgart, and this
estimate plays a role for our decision.

We shall discuss how this intuition can be used to find the target faster.
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Adding heuristic values

Suppose that we have a heuristic function h for conservatively estimating the
distance from any node to the target v .

I.e. for each node w we have a value h(w) that gives an estimate for the
distance from w to v .

h is called a monotone heuristic if it satisfies the “triangle property”, i.e.:

Let w , z be two nodes, and let D be the actual shortest distance from w to
z. Then h(w) ≤ D + h(z).

Note: If h(v) = 0, then this property implies that h(w) may be at least as large
as the real distance from w to v .

Note: When searching on a real map, taking the distance “as the crow flies”
satisfies this property.
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The A∗ algorithm

The so-called A∗ algorithm is a variant of Dijkstra’s that takes heuristics into
account. Its only modification is the selection of the next front node to be visited:

In each iteration of the while loop, the A∗ algorithm picks a front node w
for which the sum of its distance (from u) and the value h(w) is minimal
among all front nodes.

Moreover, the A∗ algorithm terminates when w = v .

The A∗ algorithm can be shown correct if h is monotone, i.e. in that case it will
still compute the shortest distance from u to v , but in general it will consider
fewer nodes.
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Example
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The example together with a monotone heuristic, given in purple typewriter script.
ggg
ggg
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Running A∗ on the example
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The result after visiting Munich (M); computed distances are given in green. The
front node with the smallest sum is Augsburg (A), with a sum of
70 + 150 = 220.
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Running A∗ on the example
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Result after visiting Augsburg (A). The next node to be visited is Donauwörth
(DO), with a sum of 95 + 130 = 225.
ggg
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Running A∗ on the example
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After Donauwörth (DO), the next nodes to be visited are Ulm (UL), Aalen (AA),
and Stuttgart (S), at which point we terminate. The computed distance to
Stuttgart is 240, which is indeed the shortest distance. Only those nodes which
are roughly between Munich and Stuttgart were visited.
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Correctness of A∗

Previously we claimed that A∗ works correctly (i.e., finds the shortest distance to
v ) provided that the heuristic h is monotone.

A∗ differs from Dijkstra only in the order in which nodes are visited. However, we
shall prove that – like in Dijkstra – that when a front node is chosen to be visited,
it is already annotated with the correct shortest distance.

Suppose, by contradiction, that we visit a node z (currently annotated with
distance A) such that A is not the shortest distance from u to z.

Then, there must be some node w that is visited later such that the shortest
distance from u to w is B, there is an edge with weight C from w to z, and
B + C < A, so that z requires updating.

Since z was visited before w , we must have A + h(z) ≤ B + h(w).

However, this together implies B + C + h(z) < B + h(w), and therefore
h(w) > C + h(z), which contradicts the assumption that h is monotone.
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Dijkstra’s algorithm and negative weights

As mentioned, Dijkstra’s algorithm assumes that the weights of the edges are
non-negative.

If there are non-negative weights, the algorithm can fail.

However, there is a way to adapt the algorithm in case there are non-negative
edges but no negative cycles (i.e., cycles in which the sum of the weights is
negative).

Whenever the distance visited (red) node is updated, make this node a
front (blue) node again.

This will mean that the algorithm may visit notes more than once, so the stated
complexity will no longer be true.

Beware: With this change, the algorithm may never terminate in the presence of
negative cycles!
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Negative weights: Example
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Here, the edge from h to e has a negative weight. Starting from a, we first visit j
and e. Only when h is visited next, we would update the distance of e to 1, but
the distance of k and d would remain incorrect.
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Dijkstra’s algorithm and negative weights

As mentioned, Dijkstra’s algorithm assumes that the weights of the edges are
non-negative.

If there are non-negative weights, the algorithm can fail.

However, there is a way to adapt the algorithm in case there are non-negative
edges but no negative cycles (i.e., cycles in which the sum of the weights is
negative).

Whenever the distance visited (red) node is updated, make this node a
front (blue) node again.

This will mean that the algorithm may visit notes more than once, so the stated
complexity will no longer be true.

Beware: With this change, the algorithm may never terminate in the presence of
negative cycles!
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Negative weights: Example
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With the aforementioned fix, e becomes a front node once more when h is
visited. This will cause the distance of k and d to be corrected eventually.
blag
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Dijkstra’s algorithm and negative weights

As mentioned, Dijkstra’s algorithm assumes that the weights of the edges are
non-negative.

If there are non-negative weights, the algorithm can fail.

However, there is a way to adapt the algorithm in case there are non-negative
edges but no negative cycles (i.e., cycles in which the sum of the weights is
negative).

Whenever the distance visited (red) node is updated, make this node a
front (blue) node again.

This will mean that the algorithm may visit notes more than once, so the stated
complexity will no longer be true.

Beware: With this change, the algorithm may never terminate in the presence of
negative cycles!
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Shortest paths in the presence of negative cycles

If a negative cycle exists in the graph, then there is no meaningful “shortest path”
towards to nodes in the graph.

The Bellman-Ford algorithm (discussed on the next slide) can be used in this
case instead. It has the following properties:

The Bellman-Ford algorithm always terminates.

If there is a negative cycle, the algorithm detects it (and aborts).

Otherwise, it will find the shortest paths, like Dijkstra’s algorithm.

However, the price to pay is a longer running time.

Therefore, using the Bellman-Ford algorithm makes sense only if the graph
under consideration has negative weights but one is uncertain whether they form
a negative cycle.
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Bellman-Ford algorithm

The Bellman-Ford algorithm computes a shortest distance d[v] for each node v
from some starting node u. It works as follows (sketch):

In the following, a “round” means to take each edge (v , w) with weight x and
set d[w] := min{d[w], d[v] + x}.

1. Set d[v] := ∞ for all nodes v 6= u, and d[u] := 0.

2. Perform n − 1 rounds, where n is the number of nodes.

3. Perform one more round. If any distance value changes in this last round,
then abort, saying that a negative cycle has been detected. Otherwise, d[v]
provides the shortest distance for all nodes v .

The correctness of the algorithm uses on the fact that, in the absence of negative
cycles, a shortest path will contain at most n − 1 edges. On the other hand,
every cycle can be completed with at most n edges.
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All-pairs shortest distances

Suppose that we have a graph G (possibly with negative edge weights or even
negative cycles) with n nodes and m edges.

Let d(u, v) denote the shortest distance between nodes u and v in a graph G.
Computing d(u, v) for all pairs u, v is called the all-pairs shortest-path problem.

Reminder: The Bellman-Ford algorithm computes d(u, v) for a fixed node u and
all nodes v .

One could obtain the solution of the all-pairs shortest path problem by using
Bellman-Ford once for each node u. The running time for this is O(n2 · m) (even
Θ(n2 · m)).

Note that (for connected graphs), m is usually bigger than n. There is a better
solution for the all-pairs problem that takes only O(n3) time.
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Distance matrix

In the following, we again assume that the nodes are numbered 1..n.

Now, we can arrange the edge weights in an n × n matrix. The entry at position
(i, j), denoted M(i, j) is the weight of the edge from i to j , ∞ if no such edge
exists, and 0 if i = j . Example:
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1 2
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4



0 3 2 ∞ ∞ ∞
∞ 0 −2 2 ∞ ∞
∞ ∞ 0 ∞ 2 ∞
∞ ∞ ∞ 0 ∞ 4

3 ∞ ∞ ∞ 0 ∞
∞ ∞ 1 ∞ ∞ 0



198



Constrained path

Let i, j be nodes and 0 ≤ k ≤ n. A k -constrained path from i to j is a path that
visits only nodes whose numbers are at most k (apart from i and j).

Let c(i, j, k) denote the length of the shortest k -constrained path from i to j .
Obviously, c(i, j, n) = d(i, j) and c(i, j,0) = M(i, j).

The algorithm that we shall discuss (called the Floyd-Warshall algorithm) makes
use of these two facts.

It starts with the values c(i, j,0), given by the distance matrix. Then it
makes n iterations. In the first iteration, the matrix will be replaced by one
that gives the values c(i, j,1), then in the next iteration c(i, j,2), and
eventually c(i, j, n), giving the solution.
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For computing shortest k + 1-constrained paths from shortest k -constrained
paths, the following property helps:

c(i, j, k + 1) := min{c(i, j, k), c(i, k + 1, k) + c(k + 1, j, k)}

Explanation: If we already know the shortest k -constrained path, then the only
additional paths that we may take are via the node k + 1.

Below, the values for c(i, j,0) (left) and c(i, j,1) (right) are shown.



0 3 2 ∞ ∞ ∞
∞ 0 −2 2 ∞ ∞
∞ ∞ 0 ∞ 2 ∞
∞ ∞ ∞ 0 ∞ 4

3 ∞ ∞ ∞ 0 ∞
∞ ∞ 1 ∞ ∞ 0





0 3 2 ∞ ∞ ∞
∞ 0 −2 2 ∞ ∞
∞ ∞ 0 ∞ 2 ∞
∞ ∞ ∞ 0 ∞ 4

3 6 5 ∞ 0 ∞
∞ ∞ 1 ∞ ∞ 0
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The second iteration, values for c(i, j,1) (left) and c(i, j,2) (right). On the left,
the values for going through node 2 are indicated in magenta, on the right, the
changed values in red.



0 3 2 ∞ ∞ ∞
∞ 0 −2 2 ∞ ∞
∞ ∞ 0 ∞ 2 ∞
∞ ∞ ∞ 0 ∞ 4

3 6 5 ∞ 0 ∞
∞ ∞ 1 ∞ ∞ 0





0 3 1 5 ∞ ∞
∞ 0 −2 2 ∞ ∞
∞ ∞ 0 ∞ 2 ∞
∞ ∞ ∞ 0 ∞ 4

3 6 4 8 0 ∞
∞ ∞ 1 ∞ ∞ 0
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One more iteration:



0 3 1 5 ∞ ∞
∞ 0 −2 2 ∞ ∞
∞ ∞ 0 ∞ 2 ∞
∞ ∞ ∞ 0 ∞ 4

3 6 4 8 0 ∞
∞ ∞ 1 ∞ ∞ 0





0 3 1 5 3 ∞
∞ 0 −2 2 0 ∞
∞ ∞ 0 ∞ 2 ∞
∞ ∞ ∞ 0 ∞ 4

3 6 4 8 0 ∞
∞ ∞ 1 ∞ 3 0


Final result: 

0 3 1 5 3 9

3 0 −2 2 0 6

5 8 0 10 2 14

10 13 5 0 7 4

3 6 4 8 0 12

6 9 1 11 3 0
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Notes on the Floyd-Warshall algorithm

The algorithm makes n iterations, in each iteration each pair of nodes will be
considered. Therefore, the complexity is Θ(n3), independently of the number of
edges.

The final matrix gives the correct values for d(i, j) unless there are negative
cycles in the graph (in which case no “shortest” paths exist for some nodes).

However, if a node i is located on a negative cycle, then the entry (i, i) in the
final matrix will be negative. If such a node exists, then the final values should be
discarded.
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Minimum spanning tree

We consider one more problem with graphs, this time on undirected graphs.

Let G = (V , E) be a connected undirected graph with weights on the edges. Let
w(e) denote the weight of edge e. (Negative weights are allowed.)

A spanning tree of G is a graph G′ = (V , E ′), where E ′ ⊆ E , such that G′ is
connected and a tree, i.e. a graph without cycles.

The minimum spanning tree of G is a spanning tree G′ = (V , E ′) such that
w(G′) :=

∑
e∈E ′ w(e) is minimal among all spanning trees.

Note: Any graph G′′ = (V , E ′′) is a spanning tree if and only if it is connected
and has |V | − 1 edges.

Application: Connecting a set of objects with least cost (e.g., bridges, cabling).
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Example

A

C

B

D

EF

Here’s an archipelago consisting of six islands. Until recently, the islanders were
content rowing from one island to another when necessary.
ggg
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Example

A
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70100
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But now, the islanders want to connect their islands with bridges. They have
figured out possible location of bridges and the costs of building them, as
indicated.

206



Example

A

C

B

D

EF
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70100
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150

60
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50

Owing to global recession, the islanders cannot afford to build all bridges. They
just want to make sure that all islands are connected somehow.
ggg

207



Example

A
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EF
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50
100
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In short, they want to select a subset of edges forming a tree. The bridges
indicated in red indicate a possible solution, but not one with minimal cost. How
can they do better?
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Prim’s algorithm

An algorithm due to Prim computes a minimal spanning tree. It works as follows:

1. Set E ′ := ∅ and V ′ := ∅.

2. Select any node v ∈ V and add it to V ′.

3. While V ′ 6= V , repeat the following:

Among all the edges {v , w} such that v ∈ V ′ and w /∈ V ′, let e be one
with minimal weight. Add e to E ′ and w to V ′.

The result, G′ := (V , E ′), is a minimal spanning tree.

209



Example

A B

D
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70100
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C

In the following, the contents of V ′ and E ′ are indicated in red. Suppose that we
select C in step 2.

210



Example

A B

D

EF

120

15030

50

C
60

100 70

60

Now, the green edges are those connecting red nodes (in V ′) to black nodes (not
in V ′). There are two edges with minimal weight, the ones to D and E .
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Example

A B

EF

120

15030

C

100 70

60
D

60

50

Let’s say we pick the one to D and add it to E ′. Here’s the result. The next
minimal green edge is the one from D to F .
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Example

A B

E

120

150

C

100 70

60
D

60

F

50

30

The situation after “building the bridge” from D to F . The next minimal green
edge is the one from F to A.
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Example

B
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D

60

F

50

30

A 120

100

Notice that the edge from C to A is removed from consideration as A is added.
gg
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Example

150

CD
60

F

50

30

A

100 70
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E

B120

In the final two iterations, bridges to E and B are added (in that order). The final
result is shown above.
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Caveat

In the previous example, the minimal spanning tree could also have been
obtained by simply picking the |V | − 1 edges with minimal cost.

But doing so is not guaranteed to yield the correct result in general, as the
example below shows:

A B

C

D

10

10

50

10
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Correctness of Prim’s algorithm

It is easy to see that the algorithm indeed computes a spanning tree.
In each iteration of step 3, another node is connected to (V ′, E ′) until all are
connected, and the choice of e ensures that no cycles are created.

As for minimality, let G′ be the tree obtained by the algorithm, and let H be some
minimal spanning tree (there might be several). We shall show that
w(G′) = w(H).

Either G′ = H, then we are done. Otherwise, let e1, . . . , ek be the edges
added to G′ by the algorithm, in that order, and let em = {v , w} be the first
edge not contained in H. Let Vm be the set V ′ at the time em was added.
Thus, v ∈ Vm but w /∈ Vm.

Now, since H is a spanning tree, it must contain some path from v to w , and
let f = {v ′, w ′} be the first edge along the path such that v ′ ∈ Vm and
w ′ /∈ Vm.
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Thus, since f was not chosen as the m-th edge in G′, we have
w(f) ≥ w(em). We obtain a new graph H ′ from H by removing f and adding
em. Obviously, w(H ′) ≤ w(H).

H ′ is still connected: for every two nodes connected via f in H, there is now a
new connection in H ′ via em. Moreover, H ′ is also a tree since it is connected
and has |V | − 1 edges, so H ′ is another minimal spanning tree that contains
all of e1, . . . , em.

(Incidentally, since H was already a minimal spanning tree, we can now
conclude that w(f) = w(em).)

Now, either G′ = H ′ and we’re done, or there is some edge em′ contained in
G′ but not in H ′, with m′ > m. We can now repeat the same argument as
before and obtain a new minimal spanning tree that agrees with G′ on the first
m′ edges etc until we get one that is identical to G′.
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Additional notes on Prim’s algorithm

The algorithm does |V | − 1 iterations of step 3. In each iteration, the only
non-trivial operation is to pick the minimal-weight “green” edge.

In order to do that efficiently, we can organize the green edges in a heap, in
which case picking the minimal element is easy.

But then, we need to add edges to the heap whenever one of their nodes is
added to V ′. Each edge needs to be added at most once, so at most |E | edges
can be in the heap, and each addition takes O(log |E |) time.

Thus, the total time of the algorithm is O(|V |+ |E | log |E |).

Another algorithm for computing minimal spanning trees (with different, usually
worse, complexity) is Kruskal’s algorithm (not discussed here).
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Addendum: Finding important

nodes in a graph
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Example: The Munich subway

Question: Which are the most important stations in Munich’s subway network?
(assuming they’re not on strike. . . )

Intuitively, the ones in the centre seem to be important, i.e. those where
several lines intersect (Hauptbahnhof, Sendlinger Tor, Odeonsplatz, possibly
Marienplatz and Karlsplatz if the S-Bahn is also taken into account).

We shall find a mathematical concept that describes “importance” and matches
this intuition.
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Example 2: The Internet

Consider the following (fictional) websites on the Internet. We draw an edge from
site A to site B if A links to B.

a.org

b.com

c.de

d.edu

e.tv

Question: Which is the most important website?

Or: What is the most important website containing a given keyword?
(This is the question one asks when searching the Internet using, e.g., Google.)
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Ideas

In the following, we regard directed graphs (representing, e.g., the subway
network, the Internet, . . . )

We shall distill a notion of importance from the structure of the graph.

In the Internet example, a site could be considered important if many other site
link to it (i.e., a link can be considered a “recommendation”).

However, not all links might have the same quality.

In particular, links from sites that are already important are more relevant
than links from less important sites.

Note: The previous statement seems to imply some intractable recursive
definition. However, we shall overcome this problem.
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Probabilities as weights

Moreover, not all links from the same site may have the same importance.
(e.g., depending on their position on the site and other factors)

In the following, let us express the relative importance of links from the same
page by weights.

More to the point, our weights shall be probabilities:

The weight on the edge from A to B represents the probability of clicking on
the link to B when visiting site A.

E.g., if all links on A are equally important, then all outgoing edges from A will
have the same weights.

The sum of the weights on all outgoing edges from A needs to be 1.
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Markov chains

As an example, consider the websites from Example 2, with additional
probabilities on the edges.

a.org

b.com

c.de

d.edu

e.tv

0.6

0.4

0.5

0.5

1.0

0.2

0.3

0.5

0.7

0.3

Notice that the sum of the weights on the outgoing edges for each node is
indeed 1.

Such a directed graph with probabilities is also called a Markov chain.
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Random walk

Let us imagine a random walk on a Markov chain:

A random walk starts at some node, say u.

In every step, the next node is chosen according to the probabilities.

I.e., if we are at node u in step n and the probability on the edge from u to v is
p, then in step n + 1 we are at v with probability p.

Let pn
u,v denote the probability of, when starting in u, ending up in v after n steps.

To compute these values for a fixed n, we simply list all the paths of length n
leading from u to v and add up their probabilities.

E.g., to go from b.org to d.edu in exactly two steps, we can go via a.org or
e.tv , so

p2
b,d = 0.2 · 0.4 + 0.5 · 0.3 = 0.23
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The values for p1
u,v are directly given by the edge probabilities.

For n ≥ 2, we can compute the values pn+1
u,v from the respective values for pn

u,v ,
as follows, where V is the set of all nodes:

pn+1
u,v =

∑
w∈V

pn
u,w · p1

w ,v

Note: Google uses a model like this to determine the importance of websites.
However, they use a random-walk model with a “reset” probability: In each step,
one can go to any website with small probability. This reflects the possibility that
a web user gets bored with the present website and types in some new URL.
The Markov chain can be adapted accordingly.
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Probabilities and “importance”

Intuitively, a random walk likely to visit an “important” website more often than a
less important one.

Therefore, we are interested in the frequency with which sites are visited on
average in random walks. This corresponds to the probabilities “in the long run”.

In the following, we shall use some facts from probability theory (without proof). It
should be noted that these hold under certain benign conditions:

irreducibility, i.e. the nodes of the graph form one big SCC;

aperiodicity, i.e. it must not be possible to always walk in cycles of a period
larger than 1.

The Markov chains we consider (and the one considered by Google) easily fulfil
these conditions.
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Facts from probability theory (without proof)

Let u, v , w be nodes of a Markov chain. Then
limn→∞ pn

u,w = limn→∞ pn
v ,w =: pw .

In other words, in the long run, it does not matter where we start a random walk,
the probabilities for going to some node w are going to converge to a value we
shall call pw . Indeed, it turns out that the values of pw are unique.

The value of pw is proportional to the relative frequency with which w is visited
by random walks “in the long run”. E.g., if pu is twice as high as pv , then u will be
visited twice as often as v , on average.

Thus, the “importance” of nodes is given by the values pw .
(Importance values are relative.)
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Stationary probabilities

The values pw are called stationary probabilities.

This is because, if the values are converging, then the following must hold:

pw =
∑

v∈V
pv · p1

v ,w

Notice that the latter gives a system of linear equations, which can be solved by
standard methods (Gauß-Seidel, Newton, . . . ).

To obtain a unique solution, one must make use of the additional property∑
w∈V pw = 1.
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