Cryptography - Mock Exam

Last name:

First name:

Student ID no.:

Signature:

Code $\in\{A, \ldots, Z\}^{6}$:

- If you feel ill, let us know immediately.
- Please, do not write until told so. You are given approx. 10 minutes to read the exercises and address us in case of questions or problems.
- You will be given $\mathbf{9 0}$ minutes to fill in all the required information and write down your solutions.
- Only fill in a code if you agree that your results are published under this code on a webpage.
- Don't forget to sign.
- Write with a non-erasable pen, do not use red or green color.
- You are not allowed to use auxiliary means other than your pen and a simple calculator.
- You may answer in English or German.
- Please turn off your cell phone.
- Check that you have received $\mathbf{9}$ sheets of paper and, please, try to not destroy the binding.
- Write your solutions directly into the exam booklet.
- Should you require additional scrap paper, please tell us.
- You can obtain 40 points in the exam. You need 17 points in total to pass including potential bonuses awarded.
- See the next page for a list of abbreviations.
- Don't fill in the table below.
- Good luck!

Ex1	Ex2	Ex3	Ex4	Ex5	Ex6	Ex7	\sum

Points are rewarded as follows:

- Correct answer: 1 P
- Incorrect answer: -1P
- No answer: 0P

The final number of points is the total if positive, otherwise zero.
Remark: See the last page for a list of abbreviations.

	true	false
If PRGs exist, then also PRFs exist.	\square	\square
From every OWF a PRG can be constructed.	\square	\square
You have seen in the lecture how to construct a family of CRHFs based on any OWF.	\square	\square
Computational secret ES exist if and only if CCA-secure ES exist.	\square	\square
Existence of TDPs implies existence of CCA-secure PKES.	\square	\square
Existence of secure DSS is equivalent to the existence of CPA- secure ES.	\square	\square

Give a short (one line) answer/explanation using the results from the lecture and the exercises.
(1P): Describe how a strong PRP can be constructed from a PRF F. (Assume F has key and block length n.)

Answer : \qquad
(1P): Show how to solve the DDH relative to $\mathrm{Gen⿻}_{\mathbb{P}}$ in PPT. (Recall that Gen returns $I=\left(\left\langle\mathbb{Z}_{p}^{*}, 1, \cdot\right\rangle, q, g, x, h\right)$ with p a n-bit prime, $q=p-1$, and $\langle g\rangle=\mathbb{Z}_{p}^{*}$.)

Answer : \qquad
\qquad
(1P): Describe one construction which tries to fix the short key length of DES and is conjectured to be secure.

Answer: \qquad
(1P): State the design principle on which AES and the DES-mangler function are based on.

Answer : \qquad
(1P): State why the basic version of the RSA PKES should be used together with randomized padding, and name one padding conjectured to yield a CCA-secure PKES.

Answer :

\qquad

Exercise 3

Draw a graph with nodes
\{OWF, UOWHF, PRF, CCA-secure ES, secure MAC, CPA-secure PKES\}
with an edge from node A to node B if the existence of A is known to imply the existence of B.

Exercise 4

Let F be a PRF of key and block length n.
(a) Construct from F a secure MAC scheme for (almost) unrestricted message length. It suffices to define Mac and the padding function.
(b) Briefly describe how a CPA-secure ES and a secure MAC can always be combined into a CCA-secure ES.

Remark: There are several ways to solve (a). It suffice to give a single construction which can handle messages of length $<2^{n}$. Don't forget to pad the actual message.

Exercise 5

Let F be a PRP of key and block length n. Define $T_{k}[t](x):=F_{t}\left(x \oplus F_{k}(t)\right)$ for $t \in\{0,1\}^{n}$. Show that T is not a secure TBC.

Reminder: Recall T is secure if PPT-Eve can only distinguish with negligible advantage between the following two oracles:

- \mathcal{O}_{T} : initializes itself by choosing $k \stackrel{u}{\in}\{0,1\}^{n}$; then answers a query (t, x) by $T_{k}[t](x)$.
- $\mathcal{O}_{\text {ideal }}$: has an independent instance $\mathcal{O}_{\text {perm }}^{t}$ of the random permutation oracle for every tweak $t \in$ $\{0,1\}^{n}$, and answers a query (t, x) by $\mathcal{O}_{\text {perm }}^{t}(x)$.

Exercise 6

Let $\mathbb{G}=\left\langle\mathbb{Z}_{23}^{*}, \cdot, 1\right\rangle$.
(a) Show that $g=5$ is a generator of \mathbb{G}.
(b) Compute all values of a run of the Diffie-Helman protocol for Bob's resp. Alice's secret exponent $b=4$ resp. $a=9$ and the shared group $\mathbb{G}=\mathbb{Z}_{23}^{*}$ with $g=5$.
(c) Briefly describe how the DH protocol and the El Gamal PKES are related to each other.
(d) Let GenG be the DLP-generator used in an El Gamal PKES.

- Formally state the problem which needs to hard relative to Gen \mathcal{G} in order for the PKES, and describe such a conjectured generator.
- Propose a subgroup of \mathbb{Z}_{23}^{*} which is better suited for the DH protocol and El Gamal.

It suffices to state a generator and the size of the subgroup.

Abbreviations:

- $\mathrm{OWF}=$ one-way function (family/collection)
- OWP $=$ one-way permutation (family/collection)
- $\mathrm{TDP}=$ trapdoor one-way permutation
- $\mathrm{PRG}=$ pseudorandom generator
- $\mathrm{PRF}=$ pseudorandom function
- $\mathrm{PRP}=$ pseudorandom permutation
- UOWHF = universal one-way hash function (family/collection)
- $\mathrm{CRHF}=$ collision resistant hash function (family/collection)
- $\mathrm{ES}=$ (private-key) encryption scheme
- PKES $=$ public-key encryption scheme
- MAC = message authentication code
- DSS $=$ digital signature scheme
- $\mathrm{DLP}=$ discrete logarithm problem

