Cryptography - Mock Exam

Last name:	
First name:	
Student ID no.:	
Signature:	
$Code \in \{A, \dots, Z\}^6:$	

- If you feel ill, let us know immediately.
- Please, do not write until told so. You are given approx. 10 minutes to read the exercises and address us in case of questions or problems.
- You will be given **90 minutes** to fill in all the required information and write down your solutions.
- Only fill in a **code** if you agree that your results are published under this code on a webpage.
- Don't forget to **sign**.
- Write with a non-erasable **pen**, do not use red or green color.
- You are not allowed to use auxiliary means other than your pen and a simple calculator.
- You may answer in **English or German**.
- Please turn off your **cell phone**.
- Check that you have received 9 sheets of paper and, please, try to not destroy the binding.
- Write your **solutions** directly into the exam booklet.
- Should you require additional **scrap paper**, please tell us.
- You can obtain 40 points in the exam. You need 17 points in total to pass including potential bonuses awarded.
- See the next page for a list of **abbreviations**.
- Don't fill in the table below.
- Good luck!

Ex1	Ex2	Ex3	Ex4	Ex5	Ex6	Ex7	\prod

Points are rewarded as follows:

 \bullet Correct answer: 1P

• Incorrect answer: -1P

• No answer: 0P

The final number of points is the total if positive, otherwise zero.

Remark: See the last page for a list of abbreviations.

	true	false
If PRGs exist, then also PRFs exist.	×	
From every OWF a PRG can be constructed.	×	
You have seen in the lecture how to construct a family of CRHFs based on any OWF.		X
Computational secret ES exist if and only if CCA-secure ES exist.	×	
Existence of TDPs implies existence of CCA-secure PKES.	X	
Existence of secure DSS is equivalent to the existence of CPA-secure ES.	X	

Give a short (one line) answer/explanation using the results from the lecture and the exercises.

(1P): Describe how a strong PRP can be constructed from a PRF F. (Assume F has key and block length n.)

Answer: 4-round Ferit el network with 4 indep. keys

(1P): Show how to solve the DDH relative to $\mathsf{Gen}\mathcal{G}_{\mathbb{P}}$ in PPT. (Recall that Gen returns $I = (\langle \mathbb{Z}_p^*, 1, \cdot \rangle, q, g, x, h)$ with p a n-bit prime, q = p - 1, and $\langle g \rangle = \mathbb{Z}_p^*$.)

Answer: Compute (\overline{p})

(1P): Describe one construction which tries to fix the short key length of DES and is conjectured to be secure.

Answer: Triple DES: DESk1 ODESk2 ODESk3

(1P): State the design principle on which AES and the DES-mangler function are based

Answer: Substitution-permutation network

(1P): State why the basic version of the RSA PKES should be used together with randomized padding, and name one padding conjectured to yield a CCA-secure PKES.

Answer: Otherwise it is not CPA secure; BAEP

Draw a graph with nodes

{OWF, UOWHF, PRF, CCA-secure ES, secure MAC, CPA-secure PKES}

with an edge from node A to node B if the existence of A is known to imply the existence of B.

Let F be a PRF of key and block length n.

- (a) Construct from F a secure MAC scheme for (almost) unrestricted message length. It suffices to define Mac and the padding function.
- (b) Briefly describe how a CPA-secure ES and a secure MAC can always be combined into a CCA-secure ES.

Remark: There are several ways to solve (a). It suffice to give a single construction which can handle messages of length $< 2^n$. Don't forget to pad the actual message.

B) Enc-Hen-Mac:

· Generale secret beggs ke for the ES and kn for the NAC.

. For encouption:

as output elle

. For decoption:

as output m.

Let F be a PRP of key and block length n. Define $T_k[t](x) := F_t(x \oplus F_k(t))$ for $t \in \{0,1\}^n$.

Show that T is not a secure TBC.

Reminder: Recall T is secure if PPT-Eve can only distinguish with negligible advantage between the following two oracles:

- \mathcal{O}_T : initializes itself by choosing $k \in \{0,1\}^n$; then answers a query (t,x) by $T_k[t](x)$.
- $\mathcal{O}_{\text{ideal}}$: has an independent instance $\mathcal{O}_{\text{perm}}^t$ of the random permutation oracle for every tweak $t \in \{0,1\}^n$, and answers a query (t,x) by $\mathcal{O}_{\text{perm}}^t(x)$.

If S = T: $y = T_{on}(O^{\alpha}_{\bullet}T_{e}(O^{\alpha})) = T_{on}(T_{e}(O^{\alpha}))$ $2 = T_{e}(O^{\alpha})$ $w = T_{on}(T_{e}(O^{\alpha})) = T_{on}(O^{\alpha})$ $w = T_{on}(T_{e}(O^{\alpha})) = T_{on}(O^{\alpha})$

otherwise: Bob. that O (64/2) = For(04) 10 rogl

Let $\mathbb{G} = \langle \mathbb{Z}_{23}^*, \cdot, 1 \rangle$.

- (a) Show that g = 5 is a generator of \mathbb{G} .
- (b) Compute all values of a run of the Diffie-Helman protocol for Bob's resp. Alice's secret exponent b=4 resp. a=9 and the shared group $\mathbb{G}=\mathbb{Z}_{23}^*$ with g=5.
- (c) Briefly describe how the DH protocol and the El Gamal PKES are related to each other.
- (d) Let $\mathsf{Gen}\mathcal{G}$ be the DLP-generator used in an El Gamal PKES.
 - \bullet Formally state the problem which needs to hard relative to $\mathsf{Gen}\mathcal{G}$ in order for the PKES, and describe such a conjectured generator.
 - Propose a subgroup of \mathbb{Z}_{23}^* which is better suited for the DH protocol and El Gamal. It suffices to state a generator and the size of the subgroup.

(a)
$$23-1=2.11$$

No need to check that $5^2=2\pm 1(V)$
and $5^{-1}=25^5.5$
 $=2^5.5$
 $=32.5$
 $=9.5=45=22=-1\pm 1(V)$
(b) $16=9^6=5^4=2^2=4(23)$
 $16=9^6=5^9=4^2.5=80=11(23)$
 $16=9^6=4^9=4^9=16^4.4$
 $16=3^6=43(23)$
 $16=3^6=13(23)$

EC Gamal use sk as GT f fon permuhing a "message group element" la is chosen unif. at random for every energyption.

Abbreviations:

- OWF = one-way function (family/collection)
- OWP = one-way permutation (family/collection)
- TDP = trapdoor one-way permutation
- \bullet PRG = pseudorandom generator
- \bullet PRF = pseudorandom function
- PRP = pseudorandom permutation
- UOWHF = universal one-way hash function (family/collection)
- CRHF = collision resistant hash function (family/collection)
- $\bullet~\mathrm{ES} = (\mathrm{private\text{-}key})$ encryption scheme
- $\bullet~{\rm PKES}={\rm public\text{-}key}$ encryption scheme
- MAC = message authentication code
- \bullet DSS = digital signature scheme
- \bullet DLP = discrete logarithm problem