SOLUTION

Cryptography – Endterm

Exercise 1

1.5P each = 9P

For each of the following statements, state if it is true or false **and** give a *short* ("one line") justification of your answer (e.g. sketch the argument or give a counter-example).

Example: "If the RSA problem is hard w.r.t. $\text{Gen}\mathbb{P}^2$, then PRGs with variable stretch exist" is true because then the RSA problem yields a OWP family to which we can apply the Blum-Micali construction.

- (a) Let $g \colon \mathbb{N} \to \mathbb{N}$ with g(n) < g(2n). Then $n^{-g(n)}$ is negligible.
- (b) If Elgamal's DSS (with hashing) is secure, then the DLP is hard w.r.t. the multiplicative groups modulo primes.
- (c) The multiplicative group modulo 135 is cyclic.
- (d) If the RSA problem is hard w.r.t. $Gen \mathbb{P}^2$, then CPA-secure PKES exist.
- (e) If CCA-secure ES exist, then secure DSS exist.
- (f) If computing the Carmichael function $\lambda(N)$ for N = pq (p, q prime, unknown) is hard,

then computing the Euler φ -function $\varphi(N)$ is also hard.

Solution:

- (a) False: consider the function $g: \mathbb{N} \to \mathbb{N}$ with $g(2^k d) = k$ for $k \in \mathbb{N}$ and d odd. Obviously, $g(2^k d) < g(2^{k+1} d)$. Then for any $N \in \mathbb{N}_0$ and any c > 0 there exist infinitely many odd d > N such that $d^{-g(d)} = d^0 = 1 > d^{-c}$.
- (b) True: Elgamal-DSS hides the secret $x \in \mathbb{Z}_{p-1}$ in the group via $y = g^x \mod p$.
- (c) False: As discussed in the lecture, \mathbb{Z}_N^* is cyclic if and only if $N \in \{2, 4, p^k, 2p^k\}$ for p prime, $k \in \mathbb{N}$.
- (d) True: See the slides; Use the RSA-TDP as KEM and the Blum-Micali construction (as prOTP) as DEM.
- (e) True: OWFs suffice to construct secure DSS. And OWFs exist iff CCA-secure ES exist.
- (f) True: If we know $\varphi(N)$, we can easily also compute p and q, and thus also $\lambda(N)$; simply solve the quadratic equation $\varphi(N) = (p-1)(\frac{N}{p}-1)$ for p (see the exercises).

Exercise 2

Let F be a PRP of block and key length n. Recall the basic CBC mode:

- Given: $k \in \{0,1\}^n$, $IV \in \{0,1\}^n$, $x = x^{(1)} || \dots || x^{(s)}$ for $x^{(i)} \in \{0,1\}^n$.
- Compute: $y^{(0)} := IV$; for i = 1 to i = s: $y^{(i)} = F_k(y^{(i-1)} \oplus x^{(i)})$.
- Output: $\mathsf{CBC}^F(\mathrm{IV}, k, x) := y = y^{(0)} ||y^{(1)}|| \dots ||y^{(s)}|$

Give a self-contained description of how $CBC^{F}(IV, k, x)$ can be used to obtain a CCA-secure ES.

(This includes encryption, decryption, padding, key generation, and so on.)

Solution: EtM using rCBC plus some variant of CBC-MAC.

Let $pad_{10}(m) = m || 10...0$ with the minimal number of 0s so that the resulting message is a multiple of n.

Let $pad_{CBC}(m) = \lfloor |m| \rceil ||m|| 0 \dots 0$ with the minimal number of 0s so that the resulting message is a multiple of n.

• $\operatorname{Gen}(1^n) := k_e ||k_i|| k_o \stackrel{u}{\in} \{0, 1\}^n$. (k_o can be removed if CBC-MAC is used.)

Alternatively: $k \in \{0, 1\}^n$, then e.g. $k_e := F_k(0^n)$, $k_i := F_k(0^{n-1}1)$, and $k_o := F_k(10^{n-1})$.

• $\operatorname{Enc}_{k_e||k_i||k_o}(m)$:

 $IV \stackrel{u}{\in} \{0, 1\}^{n};$ $c := CBC^{F}(IV, k_{e}, \mathsf{pad}_{10}(m));$ $y := y^{(0)}||y^{(1)}|| \dots ||y^{(s)} = CBC^{F}(0^{n}, k_{i}, c);$ $t := F_{k_{o}}(y^{(s)}). \text{ (Destroy } y.)$

return c||t. (t||y is just as fine.)

- Here, the MAC is based on the CBC-construction plus outer encryption. So we do not need any prefix-free padding as in CBC-MAC. As the ciphertext is already a multiple of the block length, we thus need no padding at all for the MAC.
- BUT: If you want to use CBC-MAC, then you need to apply the prefix-free padding to the ciphertext (the input to the MAC!).

(It might be the case that we can get rid of pad_{CBC} for the MAC if pad_{CBC} is already used in the ES, but we haven't shown/seen anything like this in the lecture.)

- Further note that the IV used for the MAC has to be fixed (here $IV = 0^n$).
- $Dec_{k_e||k_i||k_o}(c||t)$:

$$\begin{split} y &:= y^{(0)} ||y^{(1)}|| \dots ||y^{(s)} = \mathsf{CBC}^F(0^n, k_i, c); \\ t' &:= F_{k_o}(y^{(s)}) \\ \text{if } t' \neq t: \text{ return "blub"}; \\ \text{Let } c &= c^{(0)} ||c^{(1)}|| \dots ||c^{(l)}; \\ \text{for } i &= 1 \text{ to } i = l: \ x^{(i)} := c^{(i-1)} \oplus F_{k_e}^{-1}(c^{(i)}); \\ \text{Let } m \text{ be the unique prefix of } x &= x^{(1)} || \dots ||x^{(l)} \text{ such that } x = m ||10 \dots 0; \\ \text{return m}; \end{split}$$

Exercise 3

2P+2P+1P=5P

Let $n \in \mathbb{N}$, and $1 \leq r < n$. Let $G: \{0,1\}^* \to \{0,1\}^{n-r}$, and $H: \{0,1\}^* \to \{0,1\}^r$ be two DPT-computable functions.

The OAEP is then defined a follows:

- Input: $m \in \{0,1\}^{n-r}$.
- Choose $\rho \stackrel{u}{\in} \{0,1\}^r$.
- return $m \oplus G(\rho) || \rho \oplus H(m \oplus G(\rho)).$
- (a) Briefly describe where and why the OAEP is used in cryptography.
- (b) Describe how m can be recovered given $m \oplus G(\rho) || \rho \oplus H(m \oplus G(\rho))$.
- (c) The OAEP uses a construction already used in DES. State the name of this construction.

Solution:

- (a) Basic RSA problem yields a deterministic, stateless PKES. OAEP is used to randomize the input to the RSA problem and obtain a randomized PKES. Mostly used as it can be proven to be CCA-secure in the ROM.
- (b) Input $x = m \oplus G(\rho), y = \rho \oplus H(m \oplus G(\rho))$
 - Recover $\rho = y \oplus H(x)$.
 - Recover $m = x \oplus G(\rho)$.

(c) Main computation is a two-round Feistel network.

Exercise 4

Let p = 229 and q = 233 (both prime). Set $N = p \cdot q = 53357$.

(a) Let $k := \min\{\alpha \in \mathbb{N} \mid \gcd(2^{\alpha} + 1, \lambda(N)) = 1\}$. Set $e := 2^k + 1$. Compute $d \in \mathbb{Z}^*_{\lambda(N)}$ such that $ed \equiv_{\lambda(N)} 1$.

(b) Compute $29301^{235} \pmod{N}$ using the Chinese remainder theorem.

Remark: All crucial computation steps have to be explicitly stated. It does not suffice to simply give the final result.

Solution:

(a) $\lambda(N) = \operatorname{lcm}(p-1, q-1) = \operatorname{lcm}(228, 232) = \operatorname{lcm}(2^2 \cdot 3 \cdot 19, 2^3 \cdot 29) = 2^3 \cdot 3 \cdot 19 \cdot 29 = 13224.$ So, $e = 5 = 2^2 + 1.$

Computing d does not really require Euclid here as obviously $\lambda + 1$ is a multiple of e = 5. So, $d = 2645 = \frac{1+\lambda}{e}$.

(b) CRT isomorphism: $h(x) := (x \pmod{p}, x \pmod{q})$

For the inverse isomorphism $h^{-1}(x_p, x_q) := (x_p \cdot q\beta + x_q \cdot p\alpha) \mod N$, use Euclid to compute $\alpha = 58, \beta = -57$ s.t. $1 = \alpha \cdot p + \beta \cdot q$. (In fact, this is not need in this case as $h^{-1}(x, x) = x$.)

Then:

$$\begin{array}{ll} 29301^{235} &= h^{-1}(h(29301^{235})) = h^{-1}(29301^{235} \mod p, 29301^{235} \mod q) \\ &= h^{-1}(29301^{235 \mod p-1} \mod p, 29301^{235 \mod q-1} \mod q) \\ &= h^{-1}(218^7 \mod p, 176^3 \mod q) \\ &= h^{-1}((-11)^7 \mod p, 42) \\ &= h^{-1}(-121^3 \cdot 11 \mod p, 42) \\ &= h^{-1}(42, 42) \\ &= 42 \end{array}$$

Exercise 5

Let \mathbb{QR}_{191} denote the quadratic residues modulo the prime 191 (as a subgroup of the multiplicative group \mathbb{Z}_{191}^* modulo 191).

- (a) What is the probability that a uniformly at random chosen element $a \stackrel{u}{\in} \mathbb{QR}_{191}$ is a generator of \mathbb{QR}_{191} ?
- (b) Show that 4 is a generator of \mathbb{QR}_{191} .
- (c) Decide whether $5 \in \mathbb{QR}_{191}$ holds. (*Hint*: $5^7 \equiv_{191} 6, 6^3 \equiv_{191} 5^2$.)

Solution:

(a) $|\mathbb{Q}\mathbb{R}_{191}| = \frac{|\mathbb{Z}_{191}^*|}{2} = \frac{\varphi(191)}{2} = \frac{191-1}{2} = 95$. (If p is a prime, then $\mathbb{Q}\mathbb{R}_p$ has exactly half the size of \mathbb{Z}_p^* .) As \mathbb{Z}_{191}^* is cyclic, so is $\mathbb{Q}\mathbb{R}_{191}$. Thus, $\mathbb{Q}\mathbb{R}_{191}$ is isomorphic to the additive group modulo $95 = |\mathbb{Q}\mathbb{R}_{191}|$ which has $\varphi(95) = 4 \cdot 18 = 72$ generators. So the probability is $\frac{72}{95}$.

(b) Generator test: 4 is a generator of \mathbb{QR}_{191} if and only if $4^{|\mathbb{QR}_{191}|/p} \neq_{191} 1$ for every prime p which divides $95 = |\mathbb{QR}_{191}|$: $4^5 \equiv_{191} 256 \cdot 4 \equiv_{191} 65 \cdot 4 \equiv_{191} 69, 4^{19} \equiv_{191} (69)^3 \cdot 4^3 \equiv_{191} 49$

So, 4 is a generator of \mathbb{QR}_{191} .

(c) Compute the Legendre symbol $5^{\frac{p-1}{2}} \mod 191$. 5 is a quadratic residue if and only if the Legendre symbol evaluates to 1. Using the hint, one can show that 5 has order 19: $(5^7)^3 \equiv_{191} 6^3 \equiv_{191} 5^2$

So: $5^{95} \equiv_{191} 5^{19 \cdot 5} \equiv_{191} 1$.

Alternative solutions:

(1)
$$5 \equiv_{191} 5 + 191 = 196 = (14)^2$$
.

(2) As $191 \equiv_4 3$, so if $5 \in \mathbb{QR}_{191}$, then $5^{\frac{p+1}{4}} \mod 191$ should be a square root of 5 modulo 191, i.e. $5^{\frac{p+1}{2}} \equiv_{191} 5$ should hold.

Note that you do not know whether 5 is a quadratic residue, so simply computing $5^{\frac{p+1}{4}} \mod 191$ does not prove anything.

2P+2P+2P=6P

Exercise 6

Let G be a PRG of stretch l(n) = 2n. Further, let F be a PRF of block length n and key length 2n. We build from G and F a keyed function H which has key and block length n:

For every
$$n \in \mathbb{N}$$
, for all $x, k \in \{0,1\}^n$ let $H_k(x) := F_{G(k)}(x)$

We define the following oracles:

\mathcal{O}_H	$ \mathcal{O}_F$	\mathcal{O}_R (random function oracle)
on init:	on init:	on init:
$k \stackrel{u}{\in} \{0,1\}^n$	$k \stackrel{u}{\in} \{0,1\}^{2n}$	T: empty map
on query x:	on query x:	on query x:
return $H_k(x)$	return $F_k(x)$	if $T[x]$ is undefined : $T[x] := y \stackrel{u}{\in} \{0, 1\}^n$ return $T[x]$

(a) Let \mathcal{D} be any PPT-distinguisher for the following "F-or-H"-experiment:

- Choose $b \stackrel{u}{\in} \{0, 1\}$.
- If b = 0, set $\mathcal{O} := \mathcal{O}_F$; else set $\mathcal{O} := \mathcal{O}_H$.
- $r := \mathcal{D}^{\mathcal{O}}(1^n)$
- $\triangleright \ \mathcal{D} \text{ wins if } r = b$

Show that any such \mathcal{D} can only succeed with negligible advantage (over simply guessing).

Hint: Let \mathcal{D} be a distinguisher for the "F-or-H"-experiment. Construct from it the distinguisher \mathcal{D}_G for the PRG G:

- Get input $y \in \{0, 1\}^{2n}$.
- Compute $r := \mathcal{D}(1^n)$ by answering any oracle query x by $F_y(x)$.
- return r

(b) Show that H is a PRF of key and block length n (under above assumptions on F and G), i.e. show that

$$\left|\Pr\left[\mathcal{D}^{\mathcal{O}_H}(1^n)=1\right]-\Pr\left[\mathcal{D}^{\mathcal{O}_R}(1^n)=1\right]\right|$$

is negligible for any PPT-distinguisher \mathcal{D} .

Solution:

(a) In the PRG experiment, \mathcal{D} is either given $y \stackrel{u}{\in} \{0,1\}^{2n}$ (if b' = 0) or G(k) for $k \stackrel{u}{\in} \{0,1\}^n$ (if b' = 1). Consider the case b' = 0:

In this case, all queries of $\mathcal{D}_{H,F}$ are answered via $F_y(x)$ with $y \in \{0,1\}^{2n}$, i.e. $\mathcal{D}_{1,2}$ interacts with \mathcal{O}_F .

So: \mathcal{D} wins in the case b' = 0 of the PRG game iff $\mathcal{D}_{H,F}^{\mathcal{O}_F}$ outputs r = 0 iff $\mathcal{D}_{H,F}$ wins in the case b = 0 in the experiment X.

Analogously for b' = 1:

Now, $\mathcal{D}_{H,F}$ gets all queries answered by $F_y(x)$ for y = G(k) with $k \stackrel{u}{\in} \{0,1\}^n$, i.e. $\mathcal{D}_{H,F}$ interacts with \mathcal{O}_H .

So: \mathcal{D} wins in the case b' = 1 of the PRG game iff $\mathcal{D}_{H,F}^{\mathcal{O}_H}$ outputs r = 1 iff $\mathcal{D}_{H,F}$ wins in the case b = 1 in the experiment X.

In total, \mathcal{D} wins in the PRG game exactly with the same probability as $\mathcal{D}_{H,F}$ wins in X.

Hence, the advantage of $\mathcal{D}_{H,F}$ in X can only be negligibly better than 1/2.

(b) Let $\mathcal D$ be a distinguisher for H in the PRF game. We have to show that the advantage

$$\frac{1}{2} \left| \Pr \left[\mathcal{D}^{\mathcal{O}_H} = 1 \right] - \Pr \left[\mathcal{D}^{\mathcal{O}_R} = 1 \right] \right|$$

is negligible. From (a) we know that

$$\frac{1}{2} \left| \Pr \left[\mathcal{D}^{\mathcal{O}_H} = 1 \right] - \Pr \left[\mathcal{D}^{\mathcal{O}_F} = 1 \right] \right|$$

is negligible.

As ${\cal F}$ is a PRF, also

$$\frac{1}{2} \left| \Pr \left[\mathcal{D}^{\mathcal{O}_F} = 1 \right] - \Pr \left[\mathcal{D}^{\mathcal{O}_R} = 1 \right] \right|$$

is negligible. Hence, as the sum of two negligible functions is negeligible, also

$$\frac{1}{2} \left| \Pr\left[\mathcal{D}^{\mathcal{O}_H} = 1 \right] - \Pr\left[\mathcal{D}^{\mathcal{O}_R} = 1 \right] \right| = \frac{1}{2} \left| \Pr\left[\mathcal{D}^{\mathcal{O}_H} = 1 \right] - \Pr\left[\mathcal{D}^{\mathcal{O}_F} = 1 \right] + \Pr\left[\mathcal{D}^{\mathcal{O}_F} = 1 \right] - \Pr\left[\mathcal{D}^{\mathcal{O}_R} = 1 \right] \right| \\ \leq \frac{1}{2} \left| \Pr\left[\mathcal{D}^{\mathcal{O}_F} = 1 \right] - \Pr\left[\mathcal{D}^{\mathcal{O}_R} = 1 \right] \right| + \frac{1}{2} \left| \Pr\left[\mathcal{D}^{\mathcal{O}_H} = 1 \right] - \Pr\left[\mathcal{D}^{\mathcal{O}_F} = 1 \right] \right|$$

is also negligible.

Abbreviations

- RO = random oracle
- RPO = random permutation oracle
- OWF = one-way function (family/collection)
- OWP = one-way permutation (family/collection)
- TDP = trapdoor one-way permutation
- PRG = pseudorandom generator
- PRF = pseudorandom function
- PRP = pseudorandom permutation
- ES = (PPT) private-key encryption scheme
- PKES = (PPT) public-key encryption scheme
- \oplus = bitwise XOR

- UOWHF = universal one-way hash function (family/collection)
- CRHF = collision resistant hash function (family/collection)
- MAC = (PPT) message authentication code
- DSS = (PPT) digital signature scheme
- DLP = discrete logarithm problem
- CDH = computational Diffie-Hellman problem
- DDH = decisional Diffie-Hellman problem
- CBC = cipher block chaining
- PPT = probabilistic polynomial time
- DPT = deterministic polynomial time