
Technische Universität München (I7) Winter 2014/15
Dr. M. Luttenberger / M. Schlund

SOLUTION

Cryptography – Endterm

Exercise 1 1.5P each = 9P

For each of the following statements, state if it is true or false and give a short (”one line”) justification of your answer
(e.g. sketch the argument or give a counter-example).

Example : “If the RSA problem is hard w.r.t. GenP2, then PRGs with variable stretch exist” is true because then the RSA
problem yields a OWP family to which we can apply the Blum-Micali construction.

(a) Let g : N→ N with g(n) < g(2n). Then n−g(n) is negligible.

(b) If Elgamal’s DSS (with hashing) is secure, then the DLP is hard w.r.t. the multiplicative groups modulo primes.

(c) The multiplicative group modulo 135 is cyclic.

(d) If the RSA problem is hard w.r.t. GenP2, then CPA-secure PKES exist.

(e) If CCA-secure ES exist, then secure DSS exist.

(f) If computing the Carmichael function λ(N) for N = pq (p, q prime, unknown) is hard,

then computing the Euler ϕ-function ϕ(N) is also hard.

Solution:

(a) False: consider the function g : N → N with g(2kd) = k for k ∈ N and d odd. Obviously, g(2kd) < g(2k+1d). Then for
any N ∈ N0 and any c > 0 there exist infinitely many odd d > N such that d−g(d) = d0 = 1 > d−c.

(b) True: Elgamal-DSS hides the secret x ∈ Zp−1 in the group via y = gx mod p.

(c) False: As discussed in the lecture, Z∗N is cyclic if and only if N ∈ {2, 4, pk, 2pk} for p prime, k ∈ N.

(d) True: See the slides; Use the RSA-TDP as KEM and the Blum-Micali construction (as prOTP) as DEM.

(e) True: OWFs suffice to construct secure DSS. And OWFs exist iff CCA-secure ES exist.

(f) True: If we know ϕ(N), we can easily also compute p and q, and thus also λ(N); simply solve the quadratic equation
ϕ(N) = (p− 1)(Np − 1) for p (see the exercises).

Exercise 2 8P

Let F be a PRP of block and key length n. Recall the basic CBC mode:

• Given: k ∈ {0, 1}n, IV ∈ {0, 1}n, x = x(1)|| . . . ||x(s) for x(i) ∈ {0, 1}n.

• Compute: y(0) := IV; for i = 1 to i = s: y(i) = Fk(y(i−1) ⊕ x(i)).

• Output: CBCF (IV, k, x) := y = y(0)||y(1)|| . . . ||y(s).

Give a self-contained description of how CBCF (IV, k, x) can be used to obtain a CCA-secure ES.

(This includes encryption, decryption, padding, key generation, and so on.)

Solution: EtM using rCBC plus some variant of CBC-MAC.

Let pad10(m) = m||10 . . . 0 with the minimal number of 0s so that the resulting message is a multiple of n.

Let padCBC(m) = b|m|e||m||0 . . . 0 with the minimal number of 0s so that the resulting message is a multiple of n.

• Gen(1n) := ke||ki||ko
u
∈ {0, 1}n. (ko can be removed if CBC-MAC is used.)

Alternatively: k
u
∈ {0, 1}n, then e.g. ke := Fk(0n), ki := Fk(0n−11), and ko := Fk(10n−1).

• Encke||ki||ko(m):

IV
u
∈ {0, 1}n;

c := CBCF (IV, ke, pad10(m));

y := y(0)||y(1)|| . . . ||y(s) = CBCF (0n, ki, c);

t := Fko(y(s)). (Destroy y.)

return c||t. (t||y is just as fine.)

– Here, the MAC is based on the CBC-construction plus outer encryption. So we do not need any prefix-free padding
as in CBC-MAC. As the ciphertext is already a multiple of the block length, we thus need no padding at all for the
MAC.

– BUT: If you want to use CBC-MAC, then you need to apply the prefix-free padding to the ciphertext (the input to
the MAC!).

(It might be the case that we can get rid of padCBC for the MAC if padCBC is already used in the ES, but we
haven’t shown/seen anything like this in the lecture.)

– Further note that the IV used for the MAC has to be fixed (here IV = 0n).

• Decke||ki||ko(c||t):

y := y(0)||y(1)|| . . . ||y(s) = CBCF (0n, ki, c);

t′ := Fko(y(s))

if t′ 6= t: return ”blub”;

Let c = c(0)||c(1)|| . . . ||c(l);

for i = 1 to i = l: x(i) := c(i−1) ⊕ F−1ke
(c(i));

Let m be the unique prefix of x = x(1)|| . . . ||x(l) such that x = m||10 . . . 0;

return m;

Exercise 3 2P+2P+1P=5P

Let n ∈ N, and 1 ≤ r < n. Let G : {0, 1}∗ → {0, 1}n−r, and H : {0, 1}∗ → {0, 1}r be two DPT-computable functions.

The OAEP is then defined a follows:

• Input: m ∈ {0, 1}n−r.

• Choose ρ
u
∈ {0, 1}r.

• return m⊕G(ρ)||ρ⊕H(m⊕G(ρ)).

(a) Briefly describe where and why the OAEP is used in cryptography.

(b) Describe how m can be recovered given m⊕G(ρ)||ρ⊕H(m⊕G(ρ)).

(c) The OAEP uses a construction already used in DES. State the name of this construction.

Solution:

(a) Basic RSA problem yields a deterministic, stateless PKES. OAEP is used to randomize the input to the RSA problem
and obtain a randomized PKES. Mostly used as it can be proven to be CCA-secure in the ROM.

(b) • Input x = m⊕G(ρ), y = ρ⊕H(m⊕G(ρ))

• Recover ρ = y ⊕H(x).

• Recover m = x⊕G(ρ).

(c) Main computation is a two-round Feistel network.

Exercise 4 3P+3P=6P

Let p = 229 and q = 233 (both prime). Set N = p · q = 53357.

(a) Let k := min{α ∈ N | gcd(2α + 1, λ(N)) = 1}. Set e := 2k + 1.

Compute d ∈ Z∗λ(N) such that ed ≡λ(N) 1.

(b) Compute 29301235 (mod N) using the Chinese remainder theorem.

Remark : All crucial computation steps have to be explicitly stated. It does not suffice to simply give the final result.

Solution:

(a) λ(N) = lcm(p− 1, q − 1) = lcm(228, 232) = lcm(22 · 3 · 19, 23 · 29) = 23 · 3 · 19 · 29 = 13224.

So, e = 5 = 22 + 1.

Computing d does not really require Euclid here as obviously λ+ 1 is a multiple of e = 5. So, d = 2645 = 1+λ
e .

(b) CRT isomorphism: h(x) := (x (mod p), x (mod q))

For the inverse isomorphism h−1(xp, xq) := (xp · qβ + xq · pα) mod N , use Euclid to compute α = 58,β = −57 s.t.
1 = α · p+ β · q. (In fact, this is not need in this case as h−1(x, x) = x.)

Then:
29301235 = h−1(h(29301235)) = h−1(29301235 mod p, 29301235 mod q)

= h−1(29301235 mod p−1 mod p, 29301235 mod q−1 mod q)
= h−1(2187 mod p, 1763 mod q)
= h−1((−11)7 mod p, 42)
= h−1(−1213 · 11 mod p, 42)
= h−1(42, 42)
= 42

Exercise 5 2P+2P+2P=6P

Let QR191 denote the quadratic residues modulo the prime 191 (as a subgroup of the multiplicative group Z∗191 modulo 191).

(a) What is the probability that a uniformly at random chosen element a
u
∈ QR191 is a generator of QR191?

(b) Show that 4 is a generator of QR191.

(c) Decide whether 5 ∈ QR191 holds. (Hint : 57 ≡191 6, 63 ≡191 52.)

Solution:

(a) |QR191| =
|Z∗

191|
2 = ϕ(191)

2 = 191−1
2 = 95. (If p is a prime, then QRp has exactly half the size of Z∗p.)

As Z∗191 is cyclic, so is QR191. Thus, QR191 is ismorphic to the additive group modulo 95 = |QR191| which has ϕ(95) =
4 · 18 = 72 generators. So the probability is 72

95 .

(b) Generator test: 4 is a generator of QR191 if and only if 4|QR191|/p 6≡191 1 for every prime p which divides 95 = |QR191|:

45 ≡191 256 · 4 ≡191 65 · 4 ≡191 69, 419 ≡191 (69)3 · 43 ≡191 49

So, 4 is a generator of QR191.

(c) Compute the Legendre symbol 5
p−1
2 mod 191. 5 is a quadratic residue if and only if the Legendre symbol evaluates to 1.

Using the hint, one can show that 5 has order 19: (57)3 ≡191 63 ≡191 52

So: 595 ≡191 519·5 ≡191 1.

Alternative solutions:

(1) 5 ≡191 5 + 191 = 196 = (14)2.

(2) As 191 ≡4 3, so if 5 ∈ QR191, then 5
p+1
4 mod 191 should be a square root of 5 modulo 191, i.e. 5

p+1
2 ≡191 5 should

hold.

Note that you do not know whether 5 is a quadratic residue, so simply computing 5
p+1
4 mod 191 does not prove anything.

Exercise 6 3P+3P = 6P

Let G be a PRG of stretch l(n) = 2n. Further, let F be a PRF of block length n and key length 2n.

We build from G and F a keyed function H which has key and block length n:

For every n ∈ N, for all x, k ∈ {0, 1}n let Hk(x) := FG(k)(x).

We define the following oracles:

OH OF OR (random function oracle)
on init: on init: on init:

k
u
∈ {0, 1}n k

u
∈ {0, 1}2n T : empty map

on query x: on query x: on query x:

return Hk(x) return Fk(x) if T [x] is undefined : T [x] := y
u
∈ {0, 1}n

return T [x]

(a) Let D be any PPT-distinguisher for the following ”F-or-H”-experiment:

• Choose b
u
∈ {0, 1}.

• If b = 0, set O := OF ; else set O := OH .

• r r
:= DO(1n)

. D wins if r = b

Show that any such D can only succeed with negligible advantage (over simply guessing).

Hint : Let D be a distinguisher for the ”F-or-H”-experiment. Construct from it the distinguisher DG for the PRG G:

• Get input y ∈ {0, 1}2n.

• Compute r
r

:= D(1n) by answering any oracle query x by Fy(x).

• return r

(b) Show that H is a PRF of key and block length n (under above assumptions on F and G), i.e. show that∣∣Pr
[
DOH (1n) = 1

]
− Pr

[
DOR(1n) = 1

]∣∣
is negligible for any PPT-distinguisher D.

Solution:

(a) In the PRG experiment, D is either given y
u
∈ {0, 1}2n (if b′ = 0) or G(k) for k

u
∈ {0, 1}n (if b′ = 1).

Consider the case b′ = 0:

In this case, all queries of DH,F are answered via Fy(x) with y
u
∈ {0, 1}2n, i.e. D1,2 interacts with OF .

So: D wins in the case b′ = 0 of the PRG game iff DOF

H,F outputs r = 0 iff DH,F wins in the case b = 0 in the experiment
X.

Analogously for b′ = 1:

Now, DH,F gets all queries answered by Fy(x) for y = G(k) with k
u
∈ {0, 1}n, i.e. DH,F interacts with OH .

So: D wins in the case b′ = 1 of the PRG game iff DOH

H,F outputs r = 1 iff DH,F wins in the case b = 1 in the experiment
X.

In total, D wins in the PRG game exactly with the same probability as DH,F wins in X.

Hence, the advantage of DH,F in X can only be negligibly better than 1/2.

(b) Let D be a distinguisher for H in the PRF game. We have to show that the advantage

1

2

∣∣Pr
[
DOH = 1

]
− Pr

[
DOR = 1

]∣∣
is negligible. From (a) we know that

1

2

∣∣Pr
[
DOH = 1

]
− Pr

[
DOF = 1

]∣∣
is negligible.

As F is a PRF, also
1

2

∣∣Pr
[
DOF = 1

]
− Pr

[
DOR = 1

]∣∣
is negligble. Hence, as the sum of two negligible functions is negeligible, also

1
2

∣∣Pr
[
DOH = 1

]
− Pr

[
DOR = 1

]∣∣ = 1
2

∣∣Pr
[
DOH = 1

]
− Pr

[
DOF = 1

]
+ Pr

[
DOF = 1

]
− Pr

[
DOR = 1

]∣∣
≤ 1

2

∣∣Pr
[
DOF = 1

]
− Pr

[
DOR = 1

]∣∣ + 1
2

∣∣Pr
[
DOH = 1

]
− Pr

[
DOF = 1

]∣∣
is also negligible.

Abbreviations

• RO = random oracle
• RPO = random permutation oracle
• OWF = one-way function (family/collection)
• OWP = one-way permutation (family/collection)
• TDP = trapdoor one-way permutation
• PRG = pseudorandom generator
• PRF = pseudorandom function
• PRP = pseudorandom permutation
• ES = (PPT) private-key encryption scheme
• PKES = (PPT) public-key encryption scheme
• ⊕ = bitwise XOR

• UOWHF = universal one-way hash function (family/collection)
• CRHF = collision resistant hash function (family/collection)
• MAC = (PPT) message authentication code
• DSS = (PPT) digital signature scheme
• DLP = discrete logarithm problem
• CDH = computational Diffie-Hellman problem
• DDH = decisional Diffie-Hellman problem
• CBC = cipher block chaining
• PPT = probabilistic polynomial time
• DPT = deterministic polynomial time

