Technische Universitiat Miinchen (I7) Winter 2014/15

Dr. M. Luttenberger / M. Schlund

SOLUTION

Cryptography — Endterm

Exercise 1 1.5P each = 9P

For each of the following statements, state if it is true or false and give a short (”one line”) justification of your answer
(e.g. sketch the argument or give a counter-example).

Example: “If the RSA problem is hard w.r.t. GenP?, then PRGs with variable stretch exist” is true because then the RSA
problem yields a OWP family to which we can apply the Blum-Micali construction.

(a) Let g: N — N with g(n) < g(2n). Then n=9(") is negligible.

(b) If Elgamal’s DSS (with hashing) is secure, then the DLP is hard w.r.t. the multiplicative groups modulo primes.

¢) The multiplicative group modulo 135 is cyclic.

)

()

(d) If the RSA problem is hard w.r.t. GenP?, then CPA-secure PKES exist.
)
)

e) If CCA-secure ES exist, then secure DSS exist.

(
(f) If computing the Carmichael function A(NV) for N = pq (p, ¢ prime, unknown) is hard,

then computing the Euler ¢-function ¢(N) is also hard.

Solution:
(a) False: consider the function g: N — N with g(2¥d) = k for k € N and d odd. Obviously, g(2¥d) < g(2¥*1d). Then for
any N € Ny and any ¢ > 0 there exist infinitely many odd d > N such that d=9(9) =40 =1 > d—°.

(b) True: Elgamal-DSS hides the secret & € Z,_; in the group via y = ¢* mod p.
c) False: As discussed in the lecture, Z% is cyclic if and only if N € {2,4, p¥,2p*} for p prime, k € N.

True: OWFs suffice to construct secure DSS. And OWF's exist iff CCA-secure ES exist.

)
()
(d) True: See the slides; Use the RSA-TDP as KEM and the Blum-Micali construction (as prOTP) as DEM.
e)
)

f) True: If we know ¢(IN), we can easily also compute p and ¢, and thus also A(IV); simply solve the quadratic equation

¢(N) = (p—1)(5 = 1) for p (see the exercises).

(
(

Exercise 2 8P

Let F be a PRP of block and key length n. Recall the basic CBC mode:
e Given: k€ {0,1}*, IV € {0,1}", 2 = 2W|| ... ||z for) € {0, 1}
e Compute: @ :=1V; fori =1toi=s: y = F(y0~D @ z).
e Output: CBCH(IV, k,z) :=y = yO|[yD]||... [jy(*).
Give a self-contained description of how CBCF(IV7 k,x) can be used to obtain a CCA-secure ES.

(This includes encryption, decryption, padding, key generation, and so on.)

Solution: EtM using rCBC plus some variant of CBC-MAC.
Let pad;q(m) = m||10...0 with the minimal number of 0s so that the resulting message is a multiple of n.
Let padspge(m) = [|m]]||m]|0.. .0 with the minimal number of 0s so that the resulting message is a multiple of n.
o Gen(1™) := ke||k:||ko € {0,1}". (k, can be removed if CBC-MAC is used.)
Alternatively: k € {0,1}", then e.g. k. := F},(0"), k; := Fx(0""11), and k, := Fj(10"71).
® Encr.ikaix, (m):
IV € {0,1}";
¢ := CBCY(IV, k., pad,,(m));
y =y Oy Wl [ly") = CBCT(0", ks o);
t:= Fy, (y®). (Destroy y.)
return c||t. (t|]y is just as fine.)

— Here, the MAC is based on the CBC-construction plus outer encryption. So we do not need any prefix-free padding
as in CBC-MAC. As the ciphertext is already a multiple of the block length, we thus need no padding at all for the
MAC.

— BUT: If you want to use CBC-MAC, then you need to apply the prefix-free padding to the ciphertext (the input to
the MAC!).

(It might be the case that we can get rid of padspo for the MAC if pad-po is already used in the ES, but we
haven’t shown/seen anything like this in the lecture.)

— Further note that the IV used for the MAC has to be fixed (here IV = 0").

* Decy, ik, (cllt):

y =y Oy |ly® = CBCT(0", ki, c);

t' = Fr,(y)

if ¢ # t: return ”blub”;

Let ¢ = c¢O]|cM]|...||c®;

fori=1toi=10 2z :=c0-Dg F,;l(c(i));

Let m be the unique prefix of = (|| ... ||z such that z = m||10...0;

return m;

Exercise 3 2P+2P+1P=5P

Let n € N, and 1 <r <n. Let G: {0,1}* — {0,1}"", and H: {0,1}* — {0,1}" be two DPT-computable functions.
The OAEP is then defined a follows:
e Input: m € {0,1}"".
e Choose p € {0,1}".
e return m & G(p)||p @ H(m & G(p)).
(a) Briefly describe where and why the OAEP is used in cryptography.
(b) Describe how m can be recovered given m @ G(p)||p & H(m & G(p)).
)

(¢) The OAEP uses a construction already used in DES. State the name of this construction.

Solution:

(a) Basic RSA problem yields a deterministic, stateless PKES. OAEP is used to randomize the input to the RSA problem
and obtain a randomized PKES. Mostly used as it can be proven to be CCA-secure in the ROM.

(b) o Tnput 2 = m @ G(p), y = p® H(m @ G(p))
e Recover p =y @ H(x).

e Recover m =z @ G(p).

()

Main computation is a two-round Feistel network.

Exercise 4 3P+3P=6P

Let p = 229 and ¢ = 233 (both prime). Set N = p-q = 53357.

(a)

(b)

Let k := min{a € N | ged(2% + 1, A(N)) = 1}. Set e := 2F + 1.
Compute d € Z;‘\(N) such that ed =y(n) 1.

Compute 29301235 (mod N) using the Chinese remainder theorem.

Remark: All crucial computation steps have to be explicitly stated. It does not suffice to simply give the final result.

Solution:

(a)

(b)

AN) =lem(p —1,q — 1) = lcm(228,232) = lcm(2% - 3- 19,23 -29) = 23 - 3. 19 - 29 = 13224.

So,e=5=22+41.

Computing d does not really require Euclid here as obviously A + 1 is a multiple of e = 5. So, d = 2645 = %
CRT isomorphism: h(z) := (z (mod p),x (mod q))

For the inverse isomorphism h~'(z,,z,) := (z, - ¢B + z, - pa) mod N, use Euclid to compute o = 58,3 = —57 s.t.
1=a-p+3-q (In fact, this is not need in this case as h=!(z,z) = .)
Then:
29301%% = h~1(R(29301%%%)) = h~1(29301%35 mod p, 29301*** mod q)
— h™1(29301235 mod P=1 od p, 29301235 mod 1-1 o g)
= h~1(218" mod p, 176 mod q)
= h~}((=11)" mod p, 42)
= h=1(=1213 - 11 mod p, 42)
= h~1(42,42)
=42
Exercise 5 2P+2P+2P=6P

Let QR;g; denote the quadratic residues modulo the prime 191 (as a subgroup of the multiplicative group Z3y; modulo 191).

(a)
(b)
(c)

What is the probability that a uniformly at random chosen element a € QR;g; is a generator of QR 9,7
Show that 4 is a generator of QRg;.
Decide whether 5 € QR;9; holds. (Hint: 57 =19; 6, 6% =191 52.)

Solution:

(a)

(b)

|QR; g, | = \ZTQQH - ‘P(1291) =191 = 95. (If p is a prime, then QR, has exactly half the size of Z.)

As Z3g; is cyclic, so is QRyg;. Thus, QR,g; is ismorphic to the additive group modulo 95 = |QR,g;| which has ¢(95) =

_ it e T2
4 - 18 = 72 generators. So the probability is gz.

Generator test: 4 is a generator of QR,g; if and only if 4/QRi1l/P 2,9, 1 for every prime p which divides 95 = QR 9]
4% =191 256 - 4 =191 65 - 4 =191 69, 41 =191 (69)3 - 43 =91 49

So, 4 is a generator of QR;g;.

Compute the Legendre symbol 52 mod 191. 5 is a quadratic residue if and only if the Legendre symbol evaluates to 1.
Using the hint, one can show that 5 has order 19: (57)% =191 6% =191 57

So: 5% =191 519°% =197 1.

Alternative solutions:

(1) 5 =191 5+ 191 = 196 = (14)%.

(2) As 191 =4 3, s0 if 5 € QR;g;, then 5% mod 191 should be a square root of 5 modulo 191, i.e. 55 =191 D should
hold.

Note that you do not know whether 5 is a quadratic residue, so simply computing 5" mod 191 does not prove anything.

Exercise 6 3P+3P = 6P

Let G be a PRG of stretch [(n) = 2n. Further, let F' be a PRF of block length n and key length 2n.
We build from G and F' a keyed function H which has key and block length n:

For every n € N, for all z,k € {0,1}" let Hy(x) := Fg)(z)-

We define the following oracles:

On Or Og (random function oracle)
on init: on init: on init:
u u
ke {0,1}" k€ {0,1}2" T : empty map
on query z: | on query I: | on query I:
return Hy(z) | return Fi(z) | if T[z] is undefined : T'z] :=y € {0,1}"
return 7'[z]

(a) Let D be any PPT-distinguisher for the following ”F-or-H”-experiment:

e Choose b € {0,1}.
o If b =0, set O := Op; else set O := Og.
o r:=DO(1")
> D wins if r = b

Show that any such D can only succeed with negligible advantage (over simply guessing).

Hint: Let D be a distinguisher for the ”F-or-H”-experiment. Construct from it the distinguisher D¢ for the PRG G:
e Get input y € {0,1}?".
e Compute 7 := D(1™) by answering any oracle query = by F,(z).
e return r

(b) Show that H is a PRF of key and block length n (under above assumptions on F and G), i.e. show that
|Pr[D% (1) = 1] — Pr[D97(1") = 1]

is negligible for any PPT-distinguisher D.

Solution:
(a) In the PRG experiment, D is either given y € {0,1}2" (if b’ = 0) or G(k) for k € {0,1}™ (if ¥’ = 1).
Consider the case b’ = 0:
In this case, all queries of Dy g are answered via F,(z) with y & {0,1}?", i.e. Dy interacts with Op.

So: D wins in the case b’ = 0 of the PRG game iff DgFF outputs r = 0 iff Dy r wins in the case b = 0 in the experiment
X.

Analogously for b’ = 1:
Now, Dy, gets all queries answered by Fy(x) for y = G(k) with & e {0,1}", i.e. Dy, p interacts with Og.

So: D wins in the case b’ = 1 of the PRG game iff Dg’} outputs r = 1 iff Dy r wins in the case b = 1 in the experiment
X.

In total, D wins in the PRG game exactly with the same probability as Dy r wins in X.
Hence, the advantage of Dy r in X can only be negligibly better than 1/2.
(b) Let D be a distinguisher for H in the PRF game. We have to show that the advantage

% |Pr[D9 =1] — Pr[D9" = 1]

is negligible. From (a) we know that
1|Pr [D9" = 1] — Pr[D®" = 1]|
2

is negligible.

As Fis a PRF, also

S [Pr[DOr =1] — Pr[pOr = 1|

is negligble. Hence, as the sum of two negligible functions is negeligible, also

3 |Pr[D97 =1] — Pr[D%" = 1] %
2

IA

is also negligible.

Abbreviations
e RO = random oracle
e RPO = random permutation oracle
e OWF = one-way function (family/collection)
e OWP = one-way permutation (family/collection)
e TDP = trapdoor one-way permutation
e PRG = pseudorandom generator
e PRF = pseudorandom function
e PRP = pseudorandom permutation
e ES = (PPT) private-key encryption scheme
e PKES = (PPT) public-key encryption scheme
e @ = bitwise XOR

Pr
Pr

DO = 1} - PrF)OF = 1} +Pr[DOF = 1] — Pr[D9 =1]|

DOr =1

~Pe[DOn = 1]| 4 § [Pe[DOn = 1] —Pr[Or = 1]]

UOWHF = universal one-way hash function (family/collection)
CRHF = collision resistant hash function (family/collection)
MAC = (PPT) message authentication code

DSS = (PPT) digital signature scheme

DLP = discrete logarithm problem

CDH = computational Diffie-Hellman problem

DDH = decisional Diffie-Hellman problem

CBC = cipher block chaining

PPT = probabilistic polynomial time

DPT = deterministic polynomial time

