Cryptography - Endterm

Exercise 1 One Liners

For each of the following statements, state if it is true or false **and** give a *short* (one line) justification of your answer (e.g. sketch the argument or give a counter-example).

Example: "If the RSA problem is hard w.r.t. $\text{Gen}\mathbb{P}^2$, then PRGs with variable stretch exist" is true because then the RSA problem yields a OWP family to which we can apply the Blum-Micali construction.

- (a) If pseudorandom functions (PRF) exist, then CCA-secure ES exist.
- (b) If pseudorandom functions (PRF) exist, then pseudorandom generators (PRG) exist.
- (c) If DLP is hard w.r.t. $\text{Gen}\mathbb{Z}_{safe}^*$, then ElGamal using $\text{Gen}\mathbb{Z}_{safe}^*$ is CPA-secure.
- (d) If the RSA problem is hard, then computing the Carmichael function $\lambda(N)$ for N = pq (p, q prime) is hard.
- (e) If the DLP is hard w.r.t. $Gen \mathbb{QR}_{safe}$, then collision resistant hash functions exist.
- (f) If $P \neq NP$, then computationally secret ES cannot exist.
- (g) If F_k is a PRF, the cascading construction $F_k^*(x)$ together with the CBC-padding $F_k^*(\mathsf{pad}_{CBC}(m))$ yields a secure MAC.
- (h) If F_k is a PRP and G is a PRG, then $\mathsf{Enc}_k(m) := F_k(m \oplus G(k+1))$ yields a CPA-secure ES.

Exercise 2

- (a) Let $G : \{0,1\}^n \to \{0,1\}^{2n}$ be a PRG. Show that $G' : \{0,1\}^n \to \{0,1\}^{2n}$ with $G'(x) := \overline{G(x)}$ is also a PRG ($\overline{\cdot}$ is the bitwise negation).
- (b) Prove or disprove: Let $G_1, G_2 : \{0, 1\}^n \to \{0, 1\}^{2n}$ be PRGs with $G_1 \neq G_2$. Then $G : \{0, 1\}^n \to \{0, 1\}^{4n}$ defined as $G(x) := G_1(x) ||G_2(x)|$ is a PRG.

Exercise 3

Consider the following message authentication code built from a PRF F of key and block length n:

- Gen: On input 1^n , output $k \stackrel{u}{\in} \{0,1\}^n$.
- Mac: Let $\mathcal{M}_n := \{m \in \{0,1\}^* \mid n \mid |m| \land |m| < 2^n\}.$

On input $k \in \{0, 1\}^n$ and $m \in \mathcal{M}_n$, partition m into subsequent n-bit blocks $m = m^{(1)} || \dots || m^{(l)}$.

Then output $t := F_k(m^{(1)} \oplus \lfloor 1 \rceil) \oplus F_k(m^{(2)} \oplus \lfloor 2 \rceil) \oplus \cdots \oplus F_k(m^{(l)} \oplus \lfloor l \rceil)$ for some encoding $\lfloor : \rceil \{0, 1, \dots, 2^n - 1\} \to \{0, 1\}^n$. • Vrf: On input $k \in \{0, 1\}^n$, $m \in \mathcal{M}_n$, and $t \in \{0, 1\}^n$, output 1 if $\mathsf{Mac}_k(m) = t$, otherwise ouput 0.

Show that this MAC is not secure ("existentially unforgeable under an adaptive chosen-message attack"). E.g. show how to forge a valid tag for the message $0^n ||0^n$.

Exercise 4

Consider the multiplicative group \mathbb{Z}_p^* modulo the prime p = 53.

- (a) Is 2 a generator of \mathbb{Z}_p^* ?
- (b) Compute the probability that $x \stackrel{u}{\in} \mathbb{Z}_p^*$ is a generator of \mathbb{Z}_p^* .
- (c) Let $f_k \colon \mathbb{Z}_p^* \to \mathbb{Z}_p^* \colon x \mapsto (x^k \mod p)$.

For which $e \in \mathbb{Z}$ exists a $d \in \mathbb{Z}$ such that for all $x \in \mathbb{Z}_p^*$ we have $f_d(f_e(x)) = x$?

(d) Why is RSA not hard w.r.t. $\text{Gen}\mathbb{Z}^*_{\text{prime}}$?

Winter 2013/14

1.5P each = 12P

2P+3P = 5P

2P+2P+2P+1P = 7P

Exercise 5

1P+2P+2P+2P = 7P

Consider the multiplicative group \mathbb{Z}_n^* modulo $n = 13 \cdot 17 = 221$.

- (a) Compute the order of \mathbb{Z}_n^* .
- (b) Compute the exponent of \mathbb{Z}_n^* .
- (c) Use the CRT to compute a generator of a largest cyclic subgroup of Z_n^* .

Exercise 6

Given a pseudorandom permutation (PRP) F with key-length n and block-length 2n, consider the fixed-length ES \mathcal{E} (partially) defined by

- Gen: On input 1^n return $k \stackrel{u}{\in} \{0, 1\}^n$.
- Enc: On input $k, m \in \{0, 1\}^n$, choose $\rho \stackrel{u}{\in} \{0, 1\}^n$ and return $\operatorname{Enc}_k(m) := F_k(\rho || m)$.
- (a) Complete the definition of \mathcal{E} by defining Dec.
- (b) Above ES \mathcal{E} , given a key of length n, can only encrypt messages of length n.

Under the assumption that \mathcal{E} is CPA-secure, describe how to build from above ES \mathcal{E} an ES \mathcal{E}' which (1) can handle messages of arbitrary length (this rules out some padding schemes!), and (2) is also CPA-secure.

- (c) Assume further that \mathcal{E} is even CCA-secure. Is then \mathcal{E}' (your answer to (b)) also CCA-secure? Prove your answer!
- (d) Show that \mathcal{E} is CPA-secure if F is a PRP. To this end, analyze the success probability of the following PPT-distinguisher \mathcal{D} for F where \mathcal{A} is any PPT-CPA-attack on \mathcal{E} .

Definition of $\mathcal{D}^{\mathcal{O}}(1^n)$:

 $\bullet \ {\rm Let} \ {\rm Enc}^{\rm sim}$ by the following function:

On input $m \in \{0,1\}^n$ choose $\rho \stackrel{u}{\in} \{0,1\}^n$, then output $\mathsf{Enc}^{sim}(m) := \mathcal{O}(\rho||m)$.

- $m_0, m_1 := \mathcal{A}(1^n)^{\mathsf{Enc}^{\mathrm{sim}}}.$
- Choose $b \stackrel{u}{\in} \{0, 1\}$.
- $c := \operatorname{Enc}^{\operatorname{sim}}(m_b).$
- $r := \mathcal{A}^{\mathsf{Enc}^{sim}}(c).$
- If r = b output 1 (" \mathcal{O} contains F"); else output 0 (" \mathcal{O} contains RPO").

Remarks: Recall \mathcal{D} has access to an oracle \mathcal{O} where \mathcal{O} is either \mathcal{O}_0 ("perfect world") or \mathcal{O}_1 ("real world"): \mathcal{O}_0 is a random permutation oracle (RPO), i.e. on creation it chooses uniformly at random permutation from the set of all permutations of $\{0,1\}^{2n}$ which it uses to answer all queries; \mathcal{O}_1 chooses $k \in \{0,1\}^n$ on creation and answers all queries using F_k .

Abbreviations

- RO = random oracle
- RPO = random permutation oracle
- OWF = one-way function (family/collection)
- OWP = one-way permutation (family/collection)
- TDP = trapdoor one-way permutation
- PRG = pseudorandom generator
- PRF = pseudorandom function
- PRP = pseudorandom permutation
- TBC = tweakable block cipher
- ES = (PPT) private-key encryption scheme
 PKES = (PPT) public-key encryption scheme

- UOWHF = universal one-way hash function (family/collection)
- CRHF = collision resistant hash function (family/collection)
- MAC = (PPT) message authentication code
- DSS = (PPT) digital signature scheme
- DLP = discrete logarithm problem
- CDH = computational Diffie-Hellman problem
- DDH = decisional Diffie-Hellman problem
- \oplus = bitwise XOR
- OFB = output feedback
- CBC = cipher block chaining