Cryptography - Endterm

Exercise $1 \quad$ One Liners

For each of the following statements, state if it is true or false and give a short (one line) justification of your answer (e.g. sketch the argument or give a counter-example).

Example: "If the RSA problem is hard w.r.t. GenP ${ }^{2}$, then PRGs with variable strecth exist" is true because then the RSA problem yields a OWP family to which we can apply the Blum-Micali construction.
(a) If pseudorandom functions (PRF) exist, then CCA-secure ES exist.
(b) If pseudorandom functions (PRF) exist, then pseudorandom generators (PRG) exist.
(c) If DLP is hard w.r.t. $G e n \mathbb{Z}_{\text {safe }}^{*}$, then ElGamal using $G e n \mathbb{Z}_{\text {safe }}^{*}$ is CPA-secure.
(d) If the RSA problem is hard, then computing the Carmichael function $\lambda(N)$ for $N=p q$ (p, q prime) is hard.
(e) If the DLP is hard w.r.t. $G e n \mathbb{Q} \mathbb{R}_{\text {safe }}$, then collision resistant hash functions exist.
(f) If $P \neq N P$, then computationally secret ES cannot exist.
(g) If F_{k} is a PRF, the cascading construction $F_{k}^{*}(x)$ together with the CBC-padding $F_{k}^{*}\left(\operatorname{pad}_{\mathrm{CBC}}(m)\right)$ yields a secure MAC.
(h) If F_{k} is a PRP and G is a PRG, then $\operatorname{Enc}_{k}(m):=F_{k}(m \oplus G(k+1))$ yields a CPA-secure ES.

Exercise 2

$2 \mathrm{P}+3 \mathrm{P}=5 \mathrm{P}$
(a) Let $G:\{0,1\}^{n} \rightarrow\{0,1\}^{2 n}$ be a PRG. Show that $G^{\prime}:\{0,1\}^{n} \rightarrow\{0,1\}^{2 n}$ with $G^{\prime}(x):=\overline{G(x)}$ is also a PRG (\cdot is the bitwise negation).
(b) Prove or disprove: Let $G_{1}, G_{2}:\{0,1\}^{n} \rightarrow\{0,1\}^{2 n}$ be PRGs with $G_{1} \neq G_{2}$. Then $G:\{0,1\}^{n} \rightarrow\{0,1\}^{4 n}$ defined as $G(x):=G_{1}(x) \| G_{2}(x)$ is a PRG.

Exercise 3

Consider the following message authentication code built from a PRF F of key and block length n :

- Gen: On input 1^{n}, output $k \stackrel{u}{\in}\{0,1\}^{n}$.
- Mac: Let $\mathcal{M}_{n}:=\left\{m \in\{0,1\}^{*}|n||m| \wedge|m|<2^{n}\right\}$.

On input $k \in\{0,1\}^{n}$ and $m \in \mathcal{M}_{n}$, partition m into subsequent n-bit blocks $m=m^{(1)}\|\ldots\| m^{(l)}$.
Then output $t:=F_{k}\left(m^{(1)} \oplus\lfloor 1\rceil\right) \oplus F_{k}\left(m^{(2)} \oplus\lfloor 2\rceil\right) \oplus \cdots \oplus F_{k}\left(m^{(l)} \oplus\lfloor l\rceil\right)$ for some encoding $\lfloor:\rceil\left\{0,1, \ldots, 2^{n}-1\right\} \rightarrow\{0,1\}^{n}$.

- Vrf: On input $k \in\{0,1\}^{n}, m \in \mathcal{M}_{n}$, and $t \in\{0,1\}^{n}$, output 1 if $\mathrm{Mac}_{k}(m)=t$, otherwise ouput 0 .

Show that this MAC is not secure ("existentially unforgeable under an adaptive chosen-message attack"). E.g. show how to forge a valid tag for the message $0^{n} \| 0^{n}$.

Exercise 4

$2 \mathrm{P}+2 \mathrm{P}+2 \mathrm{P}+1 \mathrm{P}=7 \mathrm{P}$

Consider the multiplicative group \mathbb{Z}_{p}^{*} modulo the prime $p=53$.
(a) Is 2 a generator of \mathbb{Z}_{p}^{*} ?
(b) Compute the probability that $x \stackrel{u}{\in} \mathbb{Z}_{p}^{*}$ is a generator of \mathbb{Z}_{p}^{*}.
(c) Let $f_{k}: \mathbb{Z}_{p}^{*} \rightarrow \mathbb{Z}_{p}^{*}: x \mapsto\left(x^{k} \bmod p\right)$.

For which $e \in \mathbb{Z}$ exists a $d \in \mathbb{Z}$ such that for all $x \in \mathbb{Z}_{p}^{*}$ we have $f_{d}\left(f_{e}(x)\right)=x$?
(d) Why is RSA not hard w.r.t. $G e n \mathbb{Z}_{\text {prime }}^{*}$?

Consider the multiplicative group \mathbb{Z}_{n}^{*} modulo $n=13 \cdot 17=221$.
(a) Compute the order of \mathbb{Z}_{n}^{*}.
(b) Compute the exponent of \mathbb{Z}_{n}^{*}.
(c) Use the CRT to compute a generator of a largest cyclic subgroup of Z_{n}^{*}.

Exercise 6

$1 \mathrm{P}+2 \mathrm{P}+2 \mathrm{P}+2 \mathrm{P}=7 \mathrm{P}$
Given a pseudorandom permutation (PRP) F with key-length n and block-length $2 n$, consider the fixed-length ES \mathcal{E} (partially) defined by

- Gen: On input 1^{n} return $k \stackrel{u}{\in}\{0,1\}^{n}$.
- Enc: On input $k, m \in\{0,1\}^{n}$, choose $\rho \stackrel{u}{\in}\{0,1\}^{n}$ and return $\operatorname{Enc}_{k}(m):=F_{k}(\rho \| m)$.
(a) Complete the definition of \mathcal{E} by defining Dec.
(b) Above $\mathrm{ES} \mathcal{E}$, given a key of length n, can only encrypt messages of length n.

Under the assumption that \mathcal{E} is CPA-secure, describe how to build from above ES \mathcal{E} an ES \mathcal{E}^{\prime} which (1) can handle messages of arbitrary length (this rules out some padding schemes!), and (2) is also CPA-secure.
(c) Assume further that \mathcal{E} is even CCA-secure. Is then \mathcal{E}^{\prime} (your answer to (b)) also CCA-secure? Prove your answer!
(d) Show that \mathcal{E} is CPA-secure if F is a PRP. To this end, analyze the success probability of the following PPT-distinguisher \mathcal{D} for F where \mathcal{A} is any PPT-CPA-attack on \mathcal{E}.
Definition of $\mathcal{D}^{\mathcal{O}}\left(1^{n}\right)$:

- Let $E n c^{\text {sim }}$ by the following function:

On input $m \in\{0,1\}^{n}$ choose $\rho \stackrel{u}{\in}\{0,1\}^{n}$, then output $\operatorname{Enc}^{\operatorname{sim}}(m):=\mathcal{O}(\rho \| m)$.

- $m_{0}, m_{1}: \stackrel{r}{=} \mathcal{A}\left(1^{n}\right)^{\mathrm{Enc}}{ }^{\text {sim }}$.
- Choose $b \stackrel{u}{\in}\{0,1\}$.
- $c: \stackrel{r}{=} \mathrm{Enc}^{\mathrm{sim}}\left(m_{b}\right)$.
- $r: \stackrel{r}{=} \mathcal{A}^{\mathrm{En} c^{\mathrm{sim}}}(c)$.
- If $r=b$ output 1 ("O contains F "); else output 0 (" \mathcal{O} contains RPO").

Remarks: Recall \mathcal{D} has access to an oracle \mathcal{O} where \mathcal{O} is either \mathcal{O}_{0} ("perfect world") or \mathcal{O}_{1} ("real world"): \mathcal{O}_{0} is a random permutation oracle (RPO), i.e. on creation it chooses uniformly at random permutation from the set of all permutations of $\{0,1\}^{2 n}$ which it uses to answer all queries; \mathcal{O}_{1} chooses $k \stackrel{u}{\in}\{0,1\}^{n}$ on creation and answers all queries using F_{k}.

Abbreviations

- $\mathrm{RO}=$ random oracle
- $\mathrm{RPO}=$ random permutation oracle
- OWF = one-way function (family/collection)
- OWP $=$ one-way permutation (family/collection)
- TDP $=$ trapdoor one-way permutation
- $\mathrm{PRG}=$ pseudorandom generator
- $\mathrm{PRF}=$ pseudorandom function
- $\mathrm{PRP}=$ pseudorandom permutation
- $\mathrm{TBC}=$ tweakable block cipher
- $\mathrm{ES}=(\mathrm{PPT})$ private-key encryption scheme
- PKES $=($ PPT $)$ public-key encryption scheme
- UOWHF = universal one-way hash function (family/collection)
- $\mathrm{CRHF}=$ collision resistant hash function (family/collection)
- $\mathrm{MAC}=(P P T)$ message authentication code
- $\mathrm{DSS}=(\mathrm{PPT})$ digital signature scheme
- $\mathrm{DLP}=$ discrete logarithm problem
- $\mathrm{CDH}=$ computational Diffie-Hellman problem
- $\mathrm{DDH}=$ decisional Diffie-Hellman problem
- $\oplus=$ bitwise XOR
- $\mathrm{OFB}=$ output feedback
- $\mathrm{CBC}=$ cipher block chaining

