
Technische Universität München (I7) Winter 2013/14
Dr. M. Luttenberger / M. Schlund

SOLUTION

Cryptography – Endterm

Exercise 1 One Liners 1.5P each = 12P

For each of the following statements, state if it is true or false and give a short (one line) justification of your answer (e.g. sketch
the argument or give a counter-example).

Example : “If the RSA problem is hard w.r.t. GenP2, then PRGs with variable strecth exist” is true because then the RSA
problem yields a OWP family to which we can apply the Blum-Micali construction.

(a) If pseudorandom functions (PRF) exist, then CCA-secure ES exist.

(b) If pseudorandom functions (PRF) exist, then pseudorandom generators (PRG) exist.

(c) If DLP is hard w.r.t. GenZ∗safe, then ElGamal using GenZ∗safe is CPA-secure.

(d) If the RSA problem is hard, then computing the Carmichael function λ(N) for N = pq (p, q prime) is hard.

(e) If the DLP is hard w.r.t. GenQRsafe, then collision resistant hash functions exist.

(f) If P 6= NP , then computationally secret ES cannot exist.

(g) If Fk is a PRF, the cascading construction F ∗k (x) together with the CBC-padding F ∗k (padCBC(m)) yields a secure MAC.

(h) If Fk is a PRP and G is a PRG, then Enck(m) := Fk(m⊕G(k + 1)) yields a CPA-secure ES.

Solution:

(a) True, one can combine F -rCTR (CPA-secure) and F -MAC via the Enc-then-Mac-construction to get a CCA-secure ES.

(b) True, G(k) := Fk(b1e)||Fk(b2e)|| · · ·Fk(bse) is a PRG (of stretch n · s).

(c) False, one can distinguish messages from QRp and Z∗p \ QRp via the Legendre symbol in polynomial time (and using
ElGamal, the probability that a message from QRp “stays within” QRp is 3/4).

(d) True, otherwise we could compute the inverse d = e−1 mod λ(N) via the extended euclidean algorithm.

(e) True, using the DLP-CCF and Merkle-Damg̊ard-construction we can build a collision-resistant hash function.

(f) False, the OTP is perfectly secret and thus also computationally secret.

(g) True, the cascading construction F ∗k (x) yields a secure MAC if the adversary can only pose prefix-free queries and the
CBC-padding is prefix-free.

(h) False, the scheme is stateless and deterministic, hence cannot be CPA-secure.

Exercise 2 2P+3P = 5P

(a) Let G : {0, 1}n → {0, 1}2n be a PRG. Show that G′ : {0, 1}n → {0, 1}2n with G′(x) := G(x) is also a PRG (· is the
bitwise negation).

(b) Prove or disprove: Let G1, G2 : {0, 1}n → {0, 1}2n be PRGs with G1 6= G2. Then G : {0, 1}n → {0, 1}4n defined as
G(x) := G1(x)||G2(x) is a PRG.

Solution:

(a) Given any distinguisher A for G′ we define a distinguisher D for G as follows:

• Input y ∈ {0, 1}2n

• r r
:= A(y)

• output r

Then P[WinIndPRG
n,G (D)] = P[WinIndPRG

n,G′ (A)] which is negligible since G is a PRG. Hence, G′ is a PRG.

(b) The statement is false: Take G1, G1 for some PRG G1. By the result of the previous exercise, G1 is a PRG. However,
the following distinguisher D will distinguish G(x) = G1(x)||G1(x) from a truly random string:

• Input y = y1||y2 ∈ {0, 1}2n

• If y2 = y1 then output 1, else output 0.

Its success probability is

Case b = 0: Pb=0[WinIndPRG
n,G (D)] = 1− 2−n

Case b = 1: Pb=1[WinIndPRG
n,G (D)] = 1

So altogether P[WinIndPRG
n,G (D)] = 1− 2−(n+1) which is not negligible. Hence, G is not a PRG.

Exercise 3 3P

Consider the following message authentication code built from a PRF F of key and block length n:

• Gen: On input 1n, output k
u
∈ {0, 1}n.

• Mac: Let Mn := {m ∈ {0, 1}∗ | n | |m| ∧ |m| < 2n}.

On input k ∈ {0, 1}n and m ∈Mn, partition m into subsequent n-bit blocks m = m(1)|| . . . ||m(l).

Then output t := Fk(m(1)⊕b1e)⊕Fk(m(2)⊕b2e)⊕· · ·⊕Fk(m(l)⊕ble) for some encoding b : e{0, 1, . . . , 2n − 1} → {0, 1}n.

• Vrf: On input k ∈ {0, 1}n, m ∈Mn, and t ∈ {0, 1}n, output 1 if Mack(m) = t, otherwise ouput 0.

Show that this MAC is not secure (“existentially unforgeable under an adaptive chosen-message attack”). E.g. show how to
forge a valid tag for the message 0n||0n.

Solution: A simple solution with one query: Query 0n||0n||b3e||b4e, get tag t. Then t is valid for 0n||0n.

A different solution with three queries:

• Query 0n, get t0 = Fk(b1e).

• Query 1n, get t1 = Fk(b1e).

• Query 1n||0n, get t2 = Fk(b1e)⊕ Fk(b2e).

Then t = t0 ⊕ t1 ⊕ t2 = Fk(b1e)⊕ Fk(b2e) is valid for 0n||0n.

Here is a much simpler solution:

It is trivial to forge a valid MAC for the message m = b1e||b2e as Mack(m) = Fk(b1e ⊕ b1e)⊕ Fk(b2e ⊕ b2e) = 0n. So, we do
not even need to query the oracle once.

Exercise 4 2P+2P+2P+1P = 7P

Consider the multiplicative group Z∗p modulo the prime p = 53.

(a) Is 2 a generator of Z∗p?

(b) Compute the probability that x
u
∈ Z∗p is a generator of Z∗p.

(c) Let fk : Z∗p → Z∗p : x 7→ (xk mod p).

For which e ∈ Z exists a d ∈ Z such that for all x ∈ Z∗p we have fd(fe(x)) = x?

(d) Why is RSA not hard w.r.t. GenZ∗prime?

Solution:

(a) Since |Z∗p| = 52 = 22 · 13 we use the generator test

• 24 = 16 6= 1 mod 53

• 226 =
(
26
)4 · 22 = 114 · 4 = 13 · 4 = −1 6= 1 mod 53

Hence 2 is a generator of Z∗p.

(b) Z∗p has ϕ(ϕ(p)) many generators, therefor P[〈x〉 = Z∗p] = ϕ(ϕ(p))
ϕ(p) = 24

52 = 6
13 .

(c) fe is invertible for all e with gcd(e, λ(p)) = 1, i.e. for all e ∈ Z such that 2 - e and 13 - e.

Exercise 5 1P+2P+3P = 6P

Consider the multiplicative group Z∗n modulo n = 13 · 17 = 221.

(a) Compute the order of Z∗n.

(b) Compute the exponent of Z∗n.

(c) Use the CRT to compute a generator of a largest cyclic subgroup of Z∗n.

Solution:

(a) |Z∗n| = ϕ(n) = 12 · 16 = 192

(b) λZ∗n = λ(n) = lcm(12, 16) = 48

(c) Z∗221 ' Z∗13 × Z∗17. We start by finding generators of the two smaller groups.

〈2〉 = Z∗13 since 24 ≡13 3 6= 1 and 26 ≡13 −1. and 〈3〉 = Z∗17 since 38 ≡17 16 6= 1.

Hence (2, 3) is a generator of a subgroup of Z∗13 × Z∗17 of order lcm(12, 16) = 48 (the largest cyclic subgroup).

Since 1 = 4 ·13−3 ·17 (by the extended euclidean algorithm), we get the corresponding generator in Z∗221 via h−1(2, 3) =
4 · 13 · 3− 2 · 3 · 17 = 54 ∈ Z∗221.

Exercise 6 1P+2P+2P+2P = 7P

Given a pseudorandom permutation (PRP) F with key-length n and block-length 2n, consider the fixed-length ES E (partially)
defined by

• Gen: On input 1n return k
u
∈ {0, 1}n.

• Enc: On input k,m ∈ {0, 1}n, choose ρ
u
∈ {0, 1}n and return Enck(m) := Fk(ρ||m).

(a) Complete the definition of E by defining Dec.

(b) Above ES E , given a key of length n, can only encrypt messages of length n.

Under the assumption that E is CPA-secure, describe how to build from above ES E an ES E ′ which (1) can handle
messages of arbitrary length (this rules out some padding schemes!), and (2) is also CPA-secure.

(c) Assume further that E is even CCA-secure. Is then E ′ (your answer to (b)) also CCA-secure? Prove your answer!

(d) Show that E is CPA-secure if F is a PRP. To this end, analyze the success probability of the following PPT-distinguisher
D for F where A is any PPT-CPA-attack on E .

Definition of DO(1n):

• Let Encsim by the following function:

On input m ∈ {0, 1}n choose ρ
u
∈ {0, 1}n, then output Encsim(m) := O(ρ||m).

• m0,m1
r

:= A(1n)Enc
sim

.

• Choose b
u
∈ {0, 1}.

• c r
:= Encsim(mb).

• r r
:= AEncsim(c).

• If r = b output 1 (“O contains F”); else output 0 (“O contains RPO”).

Remarks : Recall D has access to an oracle O where O is either O0 (“perfect world”) or O1 (“real world”): O0 is a random
permutation oracle (RPO), i.e. on creation it chooses uniformly at random permutation from the set of all permutations

of {0, 1}2n which it uses to answer all queries; O1 chooses k
u
∈ {0, 1}n on creation and answers all queries using Fk.

Solution:

(a) Deck(c): Compute F−1k (c) =: y1y2 . . . y2n. Then output yn+1yn+2 . . . y2n.

(b) Let pad : {0, 1}∗ → {0, 1}∗ be defined as follows: On input m, let pad(m) be the shortest prefix of m10∗ which (1) is a
suffix of m1 and (2) whose length is a multiple of n.

Gen′: as Gen.

Enc′: givenm, k, compute pad(m) and split this into subsequent blocks consisting of n bits each: pad(m) = m(1)||m(2)|| . . . ||m(l);
then output Enc′k(m) := Enck(m(1))||Enck(m(2))|| . . . ||Enck(m(l)).

Dec′: given c, k, split c into subsequent blocks consisting of 2nbits each c(1)||c(2)|| . . . ||c(l); then computem′ := Deck(c(1))|| . . . ||Deck(c(l)).
Finally, remove from m′ all trailing 0s up to and including the first 1 from the right to obtain the plaintext.

This ES is then still CPA-secure (if F is a (strong) PRP) but not CCA-secure (if F is a strong PRP) as we can e.g.
simply remove 2n-bit blocks from the ciphertext.

(c) (This is much more detailed than what was expected in the exam.)

We have to show the advantage εA of A in the CPA-game v.s. E is negligible w.r.t. the key length n.

Recall that

Pr[A wins the CPA-game v.s. E] =
1

2
+ εA ≥

1

2
.

(We always can assume that A wins with at least probability 1/2.)

To this end, we need to relate εA to the advantage εD of D in the PRP-game v.s. F

Pr[D wins the PRP-game v.s. F] =
1

2
+ εD ≥

1

2
.

As F is assumed to be a PRP, we know that εD is negligible.

As always, we make a case distinction w.r.t. the oracle D is interacting with:

Pr[D wins the PRP-game v.s. F] =
1

2
Pr

[
DO0(1n) = 0

]
+

1

2
Pr

[
DO1(1n) = 1

]
If O = O1, then Encsim becomes the encryption method of E instantiated on some truely random key, that is, D simply
plays the CPA-game (acting as Alice&Bob) vs. A using the ES E , and by definition of D, we have

Pr
[
DO1(1n) = 1

]
= Pr[A wins the CPA-game v.s. E] =

1

2
+ εA

If O = O0, then Encsim uses the RPO for computing the encryptions: Here the intuition should be that D can only win
with probability (roughly) 1/2: as long as we never query the RPO for the same input twice, it will choose its answers
independently of the actual input uniformly at random from all the remaining possible outputs. Assume for now that we

never query the RPO for the same input twice. Then in any computation of A, when we come to the step c
r

:= Encsim(mb)
the value of c is chosen independently of the value of b, i.e. the same computation of A will take place with the same

probability for both b = 0 and b = 1. As b
u
∈ {0, 1}, the probability that r = b is thus inded exactly 1/2 under the

assumption that the RPO is only queried for distinct values.

Note that we certainly won’t query the RPO for the same input twice, if we do not choose the same ρ twice, i.e. as long
as we do not get a collision in the ρs. Hence, let C be the event that we choose the same ρ twice. Just as in the case of
rCTR, Pr[C] is negligible. Precisely, we have

Pr[C] ≤ q(n)2

2n

where q(n) is the number of encryptions done over the course of the computation of D, so q(n) is a polynomial. Then:

Pr
[
DO1(1n) = 1 | C

]
= 1/2

In total:

1/2 + εD = Pr[D wins the PRP-game v.s. F] =
1

2
(1/2 + εA) +

1

2
(Pr

[
DO1(1n) = 1 | C

]
Pr[C] + 1/2(1− Pr[C]))

This leads to:
0 ≤ εA = 2εD + (1− Pr

[
DO1(1n) = 1 | C

]
)Pr[C] ≤ 2εD + Pr[C]

As F is a PRP, εD has to be negligible; further Pr[C] is negligible. So εA is negligible, too.

Abbreviations

• RO = random oracle
• RPO = random permutation oracle
• OWF = one-way function (family/collection)
• OWP = one-way permutation (family/collection)
• TDP = trapdoor one-way permutation
• PRG = pseudorandom generator
• PRF = pseudorandom function
• PRP = pseudorandom permutation
• TBC = tweakable block cipher
• ES = (PPT) private-key encryption scheme
• PKES = (PPT) public-key encryption scheme

• UOWHF = universal one-way hash function (family/collection)
• CRHF = collision resistant hash function (family/collection)
• MAC = (PPT) message authentication code
• DSS = (PPT) digital signature scheme
• DLP = discrete logarithm problem
• CDH = computational Diffie-Hellman problem
• DDH = decisional Diffie-Hellman problem
• ⊕ = bitwise XOR
• OFB = output feedback
• CBC = cipher block chaining

