Cryptography - Endterm

Last name:

First name: Anne

Student ID no.: \qquad

Signature:

- If you feel ill, let us know immediately.
- Please, do not write until told so.
- You will be given 120 minutes to fill in all the required information and write down your solutions.
- Don't forget to sign.
- Write with a non-erasable pen, do not use red or green color.
- You are not allowed to use auxiliary means other than your pen and a simple calculator.
- You may answer in English or German.
- Please turn off your cell phone.
- Check that you have received $\mathbf{1 5}$ sheets of paper and, please do not destroy the binding.
- Write your solutions directly into the exam booklet.
- Should you require additional scrap paper, please tell us.
- You can obtain 40 points in the exam. You need $\mathbf{1 7}$ points in total to pass (grade 4.0). The bonus applies only if you pass the exam.
- See the next page for a list of abbreviations.
- Don't fill in the table below.
- Good luck!

Ex1	Ex2	Ex3	Ex4	Ex5	Ex6	\sum

Abbreviations

- $\mathrm{RO}=$ random oracle
- $\mathrm{RPO}=$ random permutation oracle
- OWF $=$ one-way function (family/collection)
- OWP $=$ one-way permutation (family/collection)
- TDP $=$ trapdoor one-way permutation
- $\mathrm{PRG}=$ pseudorandom generator
- $\operatorname{PRF}=$ pseudorandom function
- $\operatorname{PRP}=$ pseudorandom permutation
- $\mathrm{TBC}=$ tweakable block cipher
- UOWHF = universal one-way hash function (family/collection)
- $\mathrm{CRHF}=$ collision resistant hash function (family/collection)
- $\mathrm{ES}=($ private-key $)$ encryption scheme
- PKES = public-key encryption scheme
- MAC $=$ message authentication code
- DSS $=$ digital signature scheme
- DLP = discrete logarithm problem
- $\mathrm{CDH}=$ computational Diffie-Hellman problem
- $\mathrm{DDH}=$ decisional Diffie-Hellman problem
- $\oplus=$ bitwise XOR

Draw a directed graph with nodes
(A) computationally secret ES with $|\mathcal{K}|<|\mathcal{M}|$ exist
(B) RSA problem is hard w.r.t. Gen \mathbb{P}^{2}
(C) $\mathbf{N P} \neq \mathbf{P}$ holds
(D) PRG of variable stretch exist
(E) CCA-secure ES exist
(F) OWP exist
(G) DDH is hard w.r.t. $G e n \mathbb{Q} \mathbb{R}_{\text {safe }}$
(H) OWF exist
(I) PRF of key and block length n exist
(J) CDH is hard w.r.t. Gen $\mathbb{Q} \mathbb{R}_{\text {safe }}$
(K) CRHF with sufficient compression exist
(L) CCA-secure PKES exist
where a path from u to v exists if and only if the validity of u implies the validity of v based on the results presented in the lecture.
Example: $(G) \rightarrow(L)$ because of the Cramer-Shoup PKES.
You may merge several nodes into a single node if the validity of any subsumed node implies the validity of any other subsumed node.
Hint: Your graph should have at most 9 nodes.
Answer:

RED $\xlongequal{ }$ additional explanations (not required)
(a) Let F be a PRF of key and block length n.

Construct from F a PRP. State all necessary details!
Explicitly state the key and block length of the constructed PRP.
Answer:
Festal Network Fig:

$$
\begin{aligned}
& F N_{f}\left(x_{1} \ldots x_{n} x_{n+1} \ldots x_{2 n}\right) \\
& :=\quad x_{n+1} \ldots x_{2 n} \|\left(x_{1} \ldots x_{n}\right) \oplus f\left(x_{n+1} \ldots x_{2 n}\right)
\end{aligned}
$$

PRPPconsmactiongiven PRF F:

$$
\begin{gathered}
P_{k_{1}\left\|k_{2}\right\| k_{3}} \frac{\left(x_{1}-x_{2 n}\right)}{x}:=\mp N_{F_{k_{1}}} \text { oF } \omega_{F_{k_{2}}} \overline{o n}_{F_{k_{3}}}(x) \\
x \in\{0,1\}^{2 n} \sim \text { bloch length }: 2 n \\
k=k_{1}\left\|k_{2}\right\| k_{3} \in\{0,1\}^{3 n} \sim \text { keylaygn: Bn }
\end{gathered}
$$

(b) Let P be a PRP of key and block length n.
i) Construct from P a PRG of stretch $l(n)=3 n$.

Answer:
$G(k):=P_{k}(107)\left\|P_{k}(17)\right\| P_{k}(127)$
where L.7encodes the integers $\mathbb{Z}_{2^{n}}$
as n-bit slings.
ii) Construct from P a CPA-secure private-key encryption scheme.

Remark: It suffices to define Gen and Enc.
Answer:
Gen: given 14, output $k \vec{\in}\{0,1\}^{u}$
Enc: given $k \in\left\{0,13^{4}, m \in\left\{0,13^{*}\right.\right.$

1) Pad m to a multiple of n

$$
\infty m:=m 10.0
$$

2) Split m in subsequent u-bit blocks:

$$
\begin{aligned}
& \text { blocks: } \\
& \text { (1) } \| \ldots m^{(e)} \\
& \text { 3) Generate } \left.g \widehat{\in} \mathbb{Z}_{2^{n}} \cong 20,1\right\}^{n}
\end{aligned}
$$

4) Out put $c=\rho\left\|c^{(1)}\right\| \cdots \|^{(e)}$

$$
\begin{aligned}
& \text { Out put } c=\delta \\
& \text { with } \left.c^{(i)}=m^{(i)} \oplus P_{k}(L S+i]\right)
\end{aligned}
$$

(dee $r C T R$ or $r O F B$ or $F C B C$)
(c) Let (Gen ${ }_{E}$, Enc, Dec) be a CPA-secure ES and (Gen $_{M}$, Mac, Vf) a secure MAC. Construct from these a CCA-secure ES (Gen*, Enc*, Dec*).
Explicitly define all three algorithms!
Answer:
Cen: given 1^{n}, generate $k E: \approx=\operatorname{Gen}_{E}\left(1^{u}\right)$,
and $k_{n}: \stackrel{r}{=} \operatorname{Gn}_{n}\left(1^{n}\right)$,
output $k=\left(k_{E}, k \pi\right)$
Enc: given $k=\left(k_{E}, k n\right)$ and m ($\epsilon \mu_{\text {enc }}$)

1) compute $c_{i} \cong$ Enc $_{k_{E}}(m)$
2) compute $t \approx \operatorname{Ma} c_{k}(c)$
3) output (c, t)

Dec: given $l_{2}=\left(k_{k}, k_{r}\right)$ and $\left(c_{1} t\right)$.

1) if $\operatorname{orf}_{k_{n}}(c, t)=01$
output "invalid RAC $\operatorname{rag}^{4}(t)$.
2) else: output $\operatorname{Dec}_{k_{E}}$ (c)
(see Enc-then-Mac)

A friend of yours proposes the following scheme "PWDF" (password-derivation function) to derive passwords for websites from a secret key:

- Let F be a PRF of block and key length n.
- Let k be a secret n-bit key uniformly chosen at random $\left(k \stackrel{u}{\in}\{0,1\}^{n}\right)$.
- Let $u \in\{0,1\}^{*}$ be the url of the webpage (in some binary encoding).
- Compute an n-bit password of the url u as follows:

Partition u into subsequent n-bit blocks $u^{(1)}, \ldots, u^{(l)}$ (pad the last block with 0 if necessary). Set $t^{(0)}=0^{n}$.
Compute $t^{(i)}:=F_{k}\left(t^{i-1} \oplus u^{(i)}\right)$ for i from 1 to l.
Output $\operatorname{PWDF}_{k}(u):=t^{(l)}$ as password.

This CBC-חACwlo padding :

Your friend claims that PWDF satisfies the following security definition:
Every PPT-algorithm \mathcal{A} has only a negligible probability w.r.t. n to succeed in the following experiment:

1. Choose $k \stackrel{u}{\in}\{0,1\}^{n}$.
2. Run $(u, w): \stackrel{r}{=} \mathcal{A}^{\operatorname{PWDF}_{k}}\left(1^{n}\right)$.
\mathcal{A} has oracle access to PWDF_{k} in order to simulate that a password might get stolen from a webpage.
$\triangleright \mathcal{A}$ succeeds if both (i) $\mathrm{PWDF}_{k}(u)=w$ and (ii) \mathcal{A} has not queried the oracle PWDF_{k} for the image of u.
(a) Show that your friend is wrong by forging a password for the url $0^{n} \| 0^{n}$.

Answer:

1. 2. $z:=\operatorname{PWDF}_{R}(y)=F_{k}\left(O^{4}(\theta) y\right)=F_{k}(y)$ \rightarrow Computation of PWD $F_{k}\left(O^{4}\left(10^{4}\right)\right.$: $t^{(0)}=0^{n}$

$$
t^{(n)}=F_{k}\left(t^{(0)} \oplus 0^{u}\right)=F_{k}\left(0^{4}\right)=y
$$

$$
t^{(L)}=F_{k}\left(t^{(1)} \oplus O^{n}\right)=F_{k}(y)=z
$$

So z can be dotained without computing

$$
\begin{aligned}
& z \text { can be dovamea directly. } \\
& \text { PDF (}{ }^{4} 110^{4} \text {) diver }
\end{aligned}
$$

(seethe prefix attacks on MACs)
(b) Your friend's security definition has been used for another cryptographic scheme in the lecture.

State the name of this scheme.
Answer:
This is exactly the definition of secure NACS (for a particular bey generator)
(c) Briefly describe how PWDF has to be extended so that it satisfies the security definition of your friend. Answer:

Fix: Use a padding scheme which prevents the adversang from doing prefix queries.

That io: replace u by
$\lfloor|u| 7 \| u$
where the length lul of u is encoded using u bib (the block lang th of F)

Any other way ${ }^{*}$ to prevent prefie-queries on the CBC-constuctions is of course aloof fine, e.g. outer encryption using a second bey. (*discussed in the slides)

Recall: Let N be a positive integer. The Carmichael function maps N to $\lambda(N):=\min \{k>0 \mid \forall x \in$ $\left.\mathbb{Z}_{N}^{*}: x^{k} \equiv 1(\bmod N)\right\}$. For any $a \in \mathbb{Z}$ let $\exp _{a, N}: \mathbb{Z}_{N}^{*} \rightarrow \mathbb{Z}_{N}^{*}: x \mapsto x^{a} \bmod N$.
(a) Consider specifically $N=7 \cdot 11 \cdot 13=1001$.

Determine the least positive $d \in \mathbb{Z}$ such that $\exp _{d, 1001}$ is the inverse of $\exp _{7,1001}$.
Remark: $\operatorname{gcd}(7, \lambda(1001))=1$.
Answer:

$$
\lambda(7 \cdot 11 \cdot 13)=\operatorname{lcm}(6,10,12)=60
$$

Exknded Euclidean algaitum: $\operatorname{gcd}(7,60)$.

(b) State one reason why modern RSA-based PKES use randomized padding.

In addition, state the name of one such padding scheme used in practice today.
Answer:

- Otherwise Enc is deterministic
and thus not CPA-secure
- GA EP
(c) Let h be a hash function with output length 256 (in bits), e.g. SHA-256.

Further assume that N is a suitable RSA modulus with $N \in\left[2^{1024}, 2^{1025}\right]$.
Finally, let $e, d \in \mathbb{Z}_{\lambda(N)}^{*}$ with $e \cdot d \equiv 1(\bmod \lambda(N))$
Briefly describe how to compute and verify digital signatures based on the full-domain-hash heuristic when (N, e) should be the public verification key, and (N, d) the private signing key. Solution:

Extension of the range of the had function:

$$
K(m):=h(m\|(07)\| \ldots \| h(m \|<47)
$$

- Counter can also "Z"isalso fine i be prepended the majority* of \mathbb{Z}_{n} should be covered. (x uplo a negligible fraction)
Signing: $t:=\left(K(m)^{d} \bmod N\right)$

Verification:
if $t^{e} \equiv K(m)(\bmod N)$
then accept the signature elbe reject it.
(a) Is 47 a safe prime?

Answer:

$$
\text { Yes. (as } 47=2 \cdot 23+1) ~ \begin{aligned}
& \text { and } 23 \text { is a prime.) }
\end{aligned}
$$

(b) Compute the probability that $x \stackrel{u}{\in} \mathbb{Z}_{47}^{*}$ is a generator of \mathbb{Z}_{47}^{*}.

Answer:

$$
\frac{\varphi(\varphi(47))}{\varphi(47)}=\frac{\varphi(46)}{46}=\frac{22}{46}=\frac{11}{23}
$$

Recall:

$$
\begin{aligned}
& \cdot\left\langle\mathbb{Z}_{p}^{*},-1\right\rangle \cong\left\langle\mathbb{Z}_{p-1}, t, 0\right\rangle \\
& \cdot\left\langle\mathbb{Z}_{N},+, 0\right\rangle \\
& \text { has }\left|\mathbb{Z}_{N}^{*}\right|=\varphi(N) \\
& \text { many generators. }
\end{aligned}
$$

(c) Is 7 a generator of \mathbb{Z}_{47}^{*} ? Prove that your answer is correct

Answer:
Need to check if $7^{d} \neq 1(47)$ for $d \in\{2,23\}$
Obviously: $7^{2} \equiv 49 \equiv 2 \not \equiv 1(47)$

$$
\begin{aligned}
7^{23} \equiv 2^{11} \cdot 7 & \equiv 32 \cdot 32 \cdot 2 \cdot 7 \\
& \equiv(-15)^{2} \cdot 14 \\
7^{2} \equiv 2(47) & \equiv 225 \cdot 14 \\
& \equiv-10 \cdot 14 \\
& \equiv-140 \\
& \equiv 1(47)
\end{aligned}
$$

np 7 is not a generator of $\mathbb{Z} \mathbb{C}_{47}^{k}$.
(d) Give a generator of $\mathbb{Q} \mathbb{R}_{47}$. What is the order of $\mathbb{Q} \mathbb{R}_{47}$?

Answer

- 7 generates $\mathbb{Q R}$ Ry
- COR $_{47} \mid=23$

Recall: $\left(\frac{7}{47}\right)=\left(7^{23} \bmod 47\right)=1$
ns $30 \quad 7 \in \mathbb{Q} \mathbb{R}_{47}$.

- For a safe prime P. every element in $Q \mathbb{R}_{p} \backslash\{1\}$ is a generator of $\mathbb{Q} p$.
(a) Let $\langle\mathbb{G}, \cdot, 1\rangle$ be a finite cyclic group with generator g.

Denote by $q:=|\mathbb{G}|$ the order of \mathbb{G}.
Assume $q=d \cdot m$ is a composite and let d be a non-trivial factor of q.
Let $y \in \mathbb{G}$.
Show:
If $k \in \mathbb{N}$ satisfies $g^{k}=y$ in \mathbb{G}, then $(k \bmod d)$ is the unique solution of the following problem:
Determine $x \in \mathbb{Z}_{d}$ such that $\left(g^{m}\right)^{x}=y^{m}$ in \mathbb{G}.
Answer:

$$
\text { if } g^{k}=y \text { in } \mathbb{G}
$$

$$
\text { then }\left(g^{k}\right)^{m}=y^{m} \text { in } \mathbb{G}
$$

$$
\text { - Obviously: }\left(\mathrm{g}^{k}\right)^{m}=g^{k \cdot m}=\left(g^{m}\right)^{k}
$$

$$
\text { - As } g^{m} \text { has order d: }\left(g^{m}\right)^{k}=\left(g^{\text {mi }}\right)^{\text {mad d }}
$$

- Assume there is some $x \in \mathbb{Z} d$ s.t.

$$
\begin{aligned}
& \left(g^{m}\right)^{x}=y \\
& \text { Then: }\left(g^{m}\right)^{x}=\left(g^{m}\right)^{k \bmod d} \\
& \text { i.e: } \quad\left(g^{m}\right)^{x}-(k \bmod d)=1 \\
& \text { i.e: } \quad x \equiv(k \bmod d) \quad(\bmod d) \\
& \text { As } x_{1}(k \bmod d \mid \in \mathbb{Z} d: \quad x=(k \bmod d) .
\end{aligned}
$$

(b) Given are the prime 89 and the generator 3 of $\left\langle\mathbb{Z}_{89}^{*}, \cdot, 1\right\rangle$.

Your task is to determine $k \in \mathbb{Z}$ such that $3^{k} \equiv 86(\bmod 89)$.
Proceed as follows:
i) Using the preceding exercise, first determine k modulo 11 Answer:

Note: $0\left|\mathbb{Z}_{89}^{*}\right|=\mathbb{Z} 88$
As stated in (a):
($k \bmod 11$) is the unique solution of:

$$
\begin{aligned}
& (k \bmod 11) \text { is the end } x \in \mathbb{Z} 11 \text { st. }\left(3^{8}\right)^{x} \equiv 86^{8}(8 \pi)^{r} \\
& \text { "Fin } 86 \equiv-3(89)
\end{aligned}
$$

Need to find $x \in \mathbb{Z}$ en sit.

$$
\left(3^{8}\right)^{x} \equiv(-3)^{8} \equiv(3)^{8}(87)
$$

So: $x=1$ and $k \equiv 1(11)$.
ii) Someone tells you that $k \equiv 5(\bmod 8)$. Determine k.

Answer:
By the CRT:

$$
\mathbb{Z}_{88} \cong \mathbb{Z}_{8} \times \mathbb{Z}_{11}
$$

Inverse isomorphism h^{-1} :

$$
1=\operatorname{gcd}(8,11)=-4 \cdot 8+3 \cdot 11
$$

$n_{1} h^{-1}: \mathbb{Z}_{8} \times \mathbb{Z}_{11} \longrightarrow \mathbb{Z}_{88}$
$(u, v) \longmapsto(3 \cdot 11 \cdot u-4 \cdot 8 \cdot v)$ $\bmod 88$

$$
\begin{aligned}
n^{-1}(5,0) & =(133 \bmod 88) \\
& =45 \\
n o \quad 3^{45} & \equiv 86(89)
\end{aligned}
$$

Alkmahive:

$$
\begin{aligned}
k & =11 \cdot x+1 \\
& =8 \cdot y+5
\end{aligned}
$$

"Bouse force", encumerale $x=0, \ldots 7$

$$
\text { untie } \frac{11 \cdot x+1-5}{8} \in \mathbb{Z}_{8}
$$

