## Cryptography - Endterm

## Exercise 1 "One-liners"

Give a short (one line) answer/explanation using the results from the lecture and the exercises.
(a) Our notions of CPA and CCA security are based on the idea of indistinguishable encryptions. State the name of another notion of security used for ES.
(b) What is a safe prime?
(c) Name a polynomial-time algorithm for testing primality.
(d) Why is the RSA-problem not a OWF over $\left\langle\mathbb{Z}_{p}^{*}, \cdot, 1\right\rangle$ with $p$ prime?
(e) How many generators does $\left\langle\mathbb{Z}_{113}^{*}, \cdot, 1\right\rangle$ possess? Remark: 113 is prime.
(f) How many primes are asymptotically in the interval $\left[0,2^{n}\right]$ ?
(g) Give an example of a family of groups w.r.t. which the DDH is conjectured to be hard.
(h) What is OAEP used for?

## Exercise 2

(a) State which of the following cryptographic primitives resp. schemes are known to exist (as discussed in the lecture) under the assumption that CPA-secure PKES exist:

PRG, CCA-secure PKES, secure MAC, perfectly secret ES, CRHF, secure DSS, UOWHF
(b) For which of the above primitives resp. schemes is their existence known to be equivalent to the existence of OWF?
(c) State a conjecture which is known to suffice for CCA-secure PKES to exist.

## Exercise 3

$3 P+2 P+1 P+1 P=7 P$
Let $F$ be a PRF of key length $n$ and block length $l(n)$.
(a) Define Gen, and Enc for $F$-rCTR (randomized counter mode) ES.
(b) Show that $F$-rCTR ES is not CCA-secure.
(c) What is a possible advantage of $F$-rCTR when compared to $F$-rCBC (randomized cipher block chaining)?
(d) The CPA-security bound derived for $F$-rCTR in the lecture depends not only on the probability that an adversary can distinguish $F$ from a RO but also on the block length of $F$. Why?

## Exercise 4

$$
3 \mathrm{P}+2 \mathrm{P}+3 \mathrm{P}=8 \mathrm{P}
$$

Let $\left(h_{n}\right)_{n \in \mathbb{N}}$ be a collection of compression functions with $h_{n}:\{0,1\}^{2 n} \rightarrow\{0,1\}^{n}$ for $n \in \mathbb{N}$.
(a) Describe how the Merkle-Damgård construction is used to construct from $h_{n}$ a collection of hash functions $H_{n, \mathrm{IV}}$. What is the domain of $H_{n, \mathrm{IV}}$ ?
Name one cryptographic property that $H_{n, \text { IV }}$ inherits from $h_{n}$.
Let $F$ be a PRF of key and block length $n$. We can extend the domain of $F$ by applying the Merkle-Damgåd construction to $h_{n}(x \| y):=F_{x}(y)\left(\right.$ for $\left.x, y \in\{0,1\}^{n}\right)$. Denote by $\bar{F}_{\mathrm{IV}}:=H_{n, \mathrm{IV}}$ the resulting function for IV $\in\{0,1\}^{n}$.
(b) Show that $\bar{F}_{\text {IV }}$ is not a PRF for IV $\stackrel{u}{\in}\{0,1\}^{n}$ the secret key.
(c) Define (Gen, Mac, Vrf) for $F$-NMAC. Feel free to use $\bar{F}$.

The multiplicative group modulo $N$ is denoted by $\mathbb{Z}_{N}^{*} \hat{=}\left\langle\mathbb{Z}_{N}^{*}, \cdot, 1\right\rangle$. Let

$$
f_{(N, e)}: \mathbb{Z}_{N}^{*} \rightarrow \mathbb{Z}_{N}^{*}: x \mapsto x^{e} \bmod N
$$

be the map defined by taking $x \in \mathbb{Z}_{N}^{*}$ to its $e$-th power modulo $N$.
Hint: $385=5 \cdot 7 \cdot 11$.
(a) What is the order and the exponent of the group $\left\langle\mathbb{Z}_{385}^{*}, \cdot, 1\right\rangle$ ? Is this group cyclic?
(b) State the precise characterization of those $e \in \mathbb{Z}$ for which $f_{(N, e)}$ is a permutation on $\mathbb{Z}_{N}^{*}$.
(c) How many distinct permutations of this form $f_{(N, e)}$ are there? Prove your answer.
(d) Compute a $d \in \mathbb{N}$ such that $f_{(385, d)}$ is the inverse permutation of $f_{(385,7)}$.
(e) Assume you are given public and private RSA-TDP parameters ( $N, e$ ) and ( $N, d$ ), respectively. Further, let $h:\{0,1\}^{*} \rightarrow$ $\{0,1\}^{160}$ be a concrete hash function, e.g. RIPEMD-160.
Describe how to sign a message, and how to verify a message-signature pair using the RSA-TDP and $h$ based on the full-domain-hash heuristic. Assume that $N \in\left[2^{1023}, 2^{1024}\right]$.

## Exercise 6

Let $F$ be a PRF of key and block length $n$, and $\left\rceil:\left\{1,2, \ldots, 2^{n}\right\} \rightarrow\{0,1\}^{n}\right.$ some encoding function.
Assume we derive from a truly random secret key $k \stackrel{u}{\in}\{0,1\}^{n}$, a sequence of pseudorandom keys $k_{1}, \ldots, k_{r(n)}$ with $k_{i}:=F_{k}(\lfloor i\rceil)$ and $r(n)$ some fixed polynomial.
Prove that every PPT-algorithm $\mathcal{P}$ which on input $k_{1}, \ldots, k_{r(n)-1}$ tries to compute $k_{r(n)}$ can only succeed with negligible probability. To this end, define a distinguisher $\mathcal{D}$ for $F$ which uses $\mathcal{P}$ as subprocedure.

## Abbreviations

- $\mathrm{RO}=$ random oracle
- $\mathrm{RPO}=$ random permutation oracle
- OWF $=$ one-way function (family/collection)
- OWP $=$ one-way permutation (family/collection)
- $\mathrm{TDP}=$ trapdoor one-way permutation
- $\mathrm{PRG}=$ pseudorandom generator
- $\operatorname{PRF}=$ pseudorandom function
- $\operatorname{PRP}=$ pseudorandom permutation
- $\mathrm{TBC}=$ tweakable block cipher
- UOWHF = universal one-way hash function (family/collection)
- $\mathrm{CRHF}=$ collision resistant hash function (family/collection)
- $\mathrm{ES}=$ (private-key) encryption scheme
- PKES $=$ public-key encryption scheme
- MAC $=$ message authentication code
- DSS $=$ digital signature scheme
- DLP $=$ discrete logarithm problem
- DDH $=$ decisional Diffie-Hellman problem

