Cryptography – Endterm

Exercise 1 "One-liners"

Give a short (one line) answer/explanation using the results from the lecture and the exercises.

- (a) Our notions of CPA and CCA security are based on the idea of *indistinguishable* encryptions. State the name of another notion of security used for ES.
- (b) What is a safe prime?
- (c) Name a polynomial-time algorithm for testing primality.
- (d) Why is the RSA-problem not a OWF over $\langle \mathbb{Z}_p^*, \cdot, 1 \rangle$ with p prime?
- (e) How many generators does $\langle \mathbb{Z}_{113}^*, \cdot, 1 \rangle$ possess? **Remark**: 113 is prime.
- (f) How many primes are asymptotically in the interval $[0, 2^n]$?
- (g) Give an example of a family of groups w.r.t. which the DDH is conjectured to be hard.
- (h) What is OAEP used for?

Exercise 2

(a) State which of the following cryptographic primitives resp. schemes are known to exist (as discussed in the lecture) under the assumption that CPA-secure PKES exist:

PRG, CCA-secure PKES, secure MAC, perfectly secret ES, CRHF, secure DSS, UOWHF

- (b) For which of the above primitives resp. schemes is their existence known to be equivalent to the existence of OWF?
- (c) State a conjecture which is known to suffice for CCA-secure PKES to exist.

Exercise 3

Let F be a PRF of key length n and block length l(n).

- (a) Define Gen, and Enc for *F*-rCTR (randomized counter mode) ES.
- (b) Show that *F*-rCTR ES is not CCA-secure.
- (c) What is a possible advantage of F-rCTR when compared to F-rCBC (randomized cipher block chaining)?
- (d) The CPA-security bound derived for F-rCTR in the lecture depends not only on the probability that an adversary can distinguish F from a RO but also on the block length of F. Why?

Exercise 4

Let $(h_n)_{n \in \mathbb{N}}$ be a collection of compression functions with $h_n \colon \{0,1\}^{2n} \to \{0,1\}^n$ for $n \in \mathbb{N}$.

(a) Describe how the Merkle-Damgård construction is used to construct from h_n a collection of hash functions $H_{n,IV}$. What is the domain of $H_{n,IV}$?

Name one cryptographic property that $H_{n,\text{IV}}$ inherits from h_n .

Let F be a PRF of key and block length n. We can extend the domain of F by applying the Merkle-Damgård construction to $h_n(x||y) := F_x(y)$ (for $x, y \in \{0, 1\}^n$). Denote by $\overline{F}_{IV} := H_{n,IV}$ the resulting function for $IV \in \{0, 1\}^n$.

- (b) Show that \overline{F}_{IV} is not a PRF for $IV \stackrel{u}{\in} \{0,1\}^n$ the secret key.
- (c) Define (Gen, Mac, Vrf) for *F*-NMAC. Feel free to use \overline{F} .

1P each = 8P

3P+2P+3P=8P

3P+2P+1P+1P=7P

2P+2P+1P=5P

Exercise 5

The multiplicative group modulo N is denoted by $\mathbb{Z}_N^* = \langle \mathbb{Z}_N^*, \cdot, 1 \rangle$. Let

$$f_{(N,e)} \colon \mathbb{Z}_N^* \to \mathbb{Z}_N^* \colon x \mapsto x^e \mod N$$

be the map defined by taking $x \in \mathbb{Z}_N^*$ to its *e*-th power modulo N.

Hint: $385 = 5 \cdot 7 \cdot 11$.

- (a) What is the order and the exponent of the group $\langle \mathbb{Z}_{385}^*, \cdot, 1 \rangle$? Is this group cyclic?
- (b) State the precise characterization of those $e \in \mathbb{Z}$ for which $f_{(N,e)}$ is a permutation on \mathbb{Z}_N^* .
- (c) How many distinct permutations of this form $f_{(N,e)}$ are there? Prove your answer.
- (d) Compute a $d \in \mathbb{N}$ such that $f_{(385,d)}$ is the inverse permutation of $f_{(385,7)}$.
- (e) Assume you are given public and private RSA-TDP parameters (N, e) and (N, d), respectively. Further, let $h: \{0, 1\}^* \rightarrow \{0, 1\}^{160}$ be a concrete hash function, e.g. RIPEMD-160.

Describe how to sign a message, and how to verify a message-signature pair using the RSA-TDP and h based on the full-domain-hash heuristic. Assume that $N \in [2^{1023}, 2^{1024}]$.

Exercise 6

3P

Let F be a PRF of key and block length n, and $[]: \{1, 2, \ldots, 2^n\} \to \{0, 1\}^n$ some encoding function.

Assume we derive from a truly random secret key $k \stackrel{u}{\in} \{0,1\}^n$, a sequence of pseudorandom keys $k_1, \ldots, k_{r(n)}$ with $k_i := F_k(\lfloor i \rfloor)$ and r(n) some fixed polynomial.

Prove that every PPT-algorithm \mathcal{P} which on input $k_1, \ldots, k_{r(n)-1}$ tries to compute $k_{r(n)}$ can only succeed with negligible probability. To this end, define a distinguisher \mathcal{D} for F which uses \mathcal{P} as subprocedure.

Abbreviations

- RO = random oracle
- RPO = random permutation oracle
- OWF = one-way function (family/collection)
- OWP = one-way permutation (family/collection)
- TDP = trapdoor one-way permutation
- PRG = pseudorandom generator
- PRF = pseudorandom function
- PRP = pseudorandom permutation
- TBC = tweakable block cipher
- UOWHF = universal one-way hash function (family/collection)
- CRHF = collision resistant hash function (family/collection)
- ES = (private-key) encryption scheme
- PKES = public-key encryption scheme
- MAC = message authentication code
- DSS = digital signature scheme
- DLP = discrete logarithm problem
- DDH = decisional Diffie-Hellman problem