Cryptography - Endterm

Last name:

First name:

Student ID no.:

Signature:

Code $\in\{A, \ldots, Z\}^{6}$:

- If you feel ill, let us know immediately.
- Please, do not write until told so. You are given approx. 10 minutes to read the exercises and address us in case of questions or problems.
- You will be given 90 minutes to fill in all the required information and write down your solutions.
- Only fill in a code if you agree that your results are published under this code on a webpage.
- Don't forget to sign.
- Write with a non-erasable pen, do not use red or green color.
- You are not allowed to use auxiliary means other than your pen and a simple calculator.
- You may answer in English or German.
- Please turn off your cell phone.
- Check that you have received 9 sheets of paper and, please, try to not destroy the binding.
- Write your solutions directly into the exam booklet.
- Should you require additional scrap paper, please tell us.
- You can obtain 40 points in the exam. You need 17 points in total to pass including potential bonuses awarded.
- See the next page for a list of abbreviations.
- Don't fill in the table below.
- Good luck!

Ex1	Ex2	Ex3	Ex4	Ex5	Ex6	Ex7	\sum

Abbreviations

- $\mathrm{OWF}=$ one-way function (family/collection)
- OWP = one-way permutation (family/collection)
- $\mathrm{TDP}=$ trapdoor one-way permutation
- PRG $=$ pseudorandom generator
- $\mathrm{PRF}=$ pseudorandom function
- $\operatorname{PRP}=$ pseudorandom permutation
- $\mathrm{TBC}=$ tweakable block cipher
- UOWHF = universal one-way hash function (family/collection)
- $\mathrm{CRHF}=$ collision resistant hash function (family/collection)
- $\mathrm{ES}=$ (private-key) encryption scheme
- PKES $=$ public-key encryption scheme
- MAC $=$ message authentication code
- $\operatorname{DSS}=$ digital signature scheme
- DLP $=$ discrete logarithm problem

Points are rewarded as follows:

- Correct answer: 1P
- Incorrect answer: -1P
- No answer: 0P

The final number of points is the total if positive, otherwise zero.

	true	false
The one-time-pad ES is CPA-secure.	\square	\square
For a perfectly secret ES with message space \mathcal{M} and key space $\mathcal{K},\|\mathcal{K}\| \geq\|\mathcal{M}\|$ has to hold.	\square	\square
If PRGs exist, then $\mathbf{P} \neq \mathbf{N P}$.	\square	\square
No deterministic (stateless) ES can be CCA-secure.	\square	\square
You have seen in the lecture how to construct a family of CRHFs based on the assumption that the DLP is hard relative to any DLP-generator.	\square	\square
Let F be a PRP of key and block length n. Then $T_{k}[t](x):=$ $F_{t}(x) \oplus k$ is a secure TBC.	\square	\square

Give a short (one line) answer/explanation using the results from the lecture and the exercises.
(1P): Summarize Kerckhoff's main principle.

Answer : \qquad
(1P): State the four main goals of cryptography.

Answer : \qquad
(1P): Roughly spoken, the computational Diffie-Hellman problem requires Eve to ...

Answer : \qquad
(1P): Based on which requirement on the DLP-generator GenG can the El Gamal PKES be proven CPA-secure?

Answer : \qquad
(1P): State the name of a DSS based on the RSA-TDP which can be proven secure in the random oracle model.

Answer : \qquad
(1P): Let $h:\{0,1\}^{l} \times\{0,1\}^{l} \rightarrow\{0,1\}^{l}$ be a compression function, and $H_{\text {IV }}$ the hash function obtained from h using the Merkle-Damgåd construction with IV as the intialization vector. Construct from h a MAC using the NMAC construction. It suffices to define Mac.

Answer :

(1P): SHA-1 is not considered collision-resistant anymore, but NMAC instantiated with SHA-1 may still be considered a secure MAC - based on which assumption?

Answer :

\qquad
(1P): Briefly describe a decision procedure to solve the DDH in prime order groups of the form $\left\langle\mathbb{Z}_{p}^{*}, \cdot, 1\right\rangle$ in DPT with non-negligible probability.
Given $\left(p, p-1, g, g^{a}, g^{b}, z\right) \ldots$

Answer : \qquad
(1P): Assume Alice and Bob use an RSA-based PKES with N_{A} resp. N_{B} Alice's resp. Bob's modulus. Assume that N_{A} and N_{B} are products of two odd primes with $N_{A} \neq N_{B}$. Show that ppt-Eve can decrypt any message sent to Alice or Bob if $\operatorname{gcd}\left(N_{A}, N_{B}\right)>1$.

Answer : \qquad
(1P): Name one type of attack not covered by the definition of secure MAC scheme.

Answer : \qquad

Draw a graph with nodes
\{OWP, PRG, PRP, CPA-secure ES, secure DSS, CCA-secure PKES, TDP\}
and edges $A \rightarrow B$ if it was mentioned in the lecture that the existence of A implies the existence of B. Remark: Say that two nodes are equivalent if $A \rightarrow B$ and $B \rightarrow A$. Feel free to combine equivalent nodes into a single node but state explicitly which nodes are combined into one.

Let F be a PRF (not necessarily a PRP) of key and block length n
(a) (2P) Construct from F a CPA-secure ES $\mathcal{E}^{f}=\left(\operatorname{Gen}^{f}\right.$, Enc $\left.^{f}, \operatorname{Dec}^{f}\right)$ for messages of fixed length $l(n)=n$ (based on the assumption that F is a PRF).
(b) i) (1P) Construct from \mathcal{E}^{f} (not from F) a CPA-secure ES \mathcal{E} with admissible message space $\left(\{0,1\}^{n}\right)^{+}$(based on the assumption that \mathcal{E}^{f} is CPA-secure). Here, it suffices to define $\operatorname{Enc}_{k}(m)$.
ii) (1P) Assuming that \mathcal{E}^{f} is CCA-secure, does your construction guarantee that \mathcal{E} is also CCAsecure? (y/n)
(c) i) (1P) Name two modes of operations which can be used to construct from F directly a CPA-secure ES with admissible message space $\left(\{0,1\}^{n}\right)^{+}$(based on the assumption that F is a PRF).
ii) (1P) State two advantages of these modes compared to the two-step construction of (a) and (b).

Remarks:

- If you use constructions not mentioned in the lecture nodes (slides), then you need to show that your constructions indeed have the required properties.
- $\left(\{0,1\}^{n}\right)^{+}=\left\{m \in\{0,1\}^{+}|\exists k>0:|m|=k \cdot n\}\right.$.

Let F be a PRF of key and block length n.
(a) (2P) Draw the two-round Feistel network $P_{k_{1}, k_{2}}(x \| y):=\mathrm{FN}_{F_{k_{1}}, F_{k_{2}}}(x \| y)$ based on F using two independent round keys $k_{1}, k_{2} \stackrel{u}{\in}\{0,1\}^{n}$.
Remark: k_{1} should be the key that is used in the first round. x is the "left half" of the input, y is the "right half".
(b) i) (2P) Compute $P_{k_{1}, k_{2}}\left(0^{n} \| y\right)$ and $P_{k_{1}, k_{2}}\left(F_{k_{1}}\left(0^{n}\right) \oplus z \| 0^{n}\right)$.
ii) (1P) Show that PPT-Eve can compute $P_{k_{1}, k_{2}}^{-1}$ when given oracle access to $P_{k_{1}, k_{2}}$.
(c) (2P) Is $\mathrm{FN}_{F_{k_{1}}, F_{k_{2}}, F_{k_{3}}}$ with three independent keys $k_{1}, k_{2}, k_{3} \stackrel{u}{\in}\{0,1\}^{n}$ a PRP? Is it a PRF? (y/n)

Let $p=5, q=11, N=55$ and $\mathbb{G}=\left\langle\mathbb{Z}_{55}^{*}, \cdot, 1\right\rangle$. For $k \in \mathbb{N}$ set $\pi_{k}(x):=x^{k} \bmod N$.
(a) (1P) Show that π_{3} is a permutation on \mathbb{G}.

Remark: You have seen at least two conditions on k s.t. π_{k} is a permutation.
(b) i) (2P) Determine, preferably the minimal, $d \in \mathbb{N}$ s.t. $\pi_{d}=\pi_{3}^{-1}$.
ii) (1P) What algorithm can be used to determine d efficiently? State precisely what the algorithm computes.
Remark: It doesn't matter how you determine d (except for cheating). But you need to argue that d is the inverse of π_{3}.
(c) $(2 \mathrm{P})$ Compute $\pi_{3}^{-1}(6)$ using the Chinese remainder theorem and Garner's formula:

$$
I^{-1}(u, v)=\left(\left((u-v)\left(q^{-1} \bmod p\right)\right) \bmod p\right) \cdot q+v
$$

Remark: Please, make the steps of your computation visible to us.

Let F be a PRF of block and key length n.
Define $G:\{0,1\}^{n} \rightarrow\{0,1\}^{2 n}$ by $G(k):=F_{k}\left(0^{n}\right) F_{k}\left(0^{n-1} 1\right)$.
Show formally that G is a PRG based on the assumption that F is a PRF.
Hint: Construct from a PPT-distinguisher \mathcal{D}_{G} for G a PPT-distinguisher \mathcal{D}_{F} for F.

